System Support for
Diverse MI1 Styles

v -

Eric Xing
Carnegie Mellon University

Acknowledgement:
Wei Dai, Qirong Ho, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Jinliang Wei, Pengtao Xie, Xun Zheng
James Cipar, Henggang Cui,
and, Phil Gibbons, Greg Ganger, Garth Gibson

http://www.istc-cc.cmu.edu/

Intel Science & Technology
Center for Cloud Computing

2 (76\
/@ QITIE D
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics
| |
I |

A view from outside

RS,
7o
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

An ML Program (from inside)

—

argmax = £({x;,yi}Y, 1 0) + ()
6

Model Data Parameter

Solved by an iterative convergent algorithm

for (t =1 to T) ¢
doThings()

6"t = g(0", AsO(D))

doOtherThings() 7—
}

This computation needs to be fast!
N P)

(@ SN |

LIONS OF DEVICES

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Challenge #1
— Massive Data Scale

THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY

Cloud Data Center (35% CAGR)
Traditional Data Center (12% CAGR)

.~
[}
o
>
]
o
5
]
0]
z
]
N

46%

54%

2012 2013 2014 2015 2016 2017

Source: Cisco Global Cloud
Index

YEAR

Source: The Connectivist

Familiar problem: data from 50B devices, data
centers won’t fit into memory of single machine

T,
25% CAGR 2012-2017

/@ SITE D .

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Challenge #2
— Gigantic Model Size

Convolution Fully connected
r £ N M
Source: University of -
Bonn
>
>

Big Data needs Big Models to extract understanding
But ML models with >1 trillion params also won'’t fit!

/& LT

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Growing Need for Big and
Contemporary ML Programs

(1

‘&\ new output layer
A
4'\\&\&

7
7,
72

A

LA

nnnnnnnnnnn
rrrrrr

Google Brain
Deep Learning

for images:

1~10 Billion
model parameters

=== | @he New ork Times : Topic Models

M No. 56,02 UESDAY, JAT

R

OBAMA OFFERS LIBERAL ‘}IS;ON: ‘Wfﬁ.r n ews a rtl c I e

_ analysis:
Jp to 1 Trillion

model
parameters

| %Multi-task Regression
_J/g—svfor simplest whole-
> e 1 *HI1H

20TTA
<
-
B

I.l
S

Collaborative filtering

for Video recommendation:
1~10 Billion

model

N E T I: I. | x parameters
"

/& NE A . ™

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Why need new Big ML systems?

MLer’s view

Compute vs Network
LDA 32 machines (256 cores)

e Focuson
e Correctness 50007
. . 7000 7 B Network waiting time
o fewer iteration to converge, ,, 6000 -
. . o i B Compute time
e but assuming an ideal system, e.g., g P
e 2zero-cost sync, 5.)3 3000
e uniform local progress 2000 1
1000 -
0

for (t =11toT) {
doThings()
parallelUpdate(x,8)

S
Tl

doOtherThings()
}
Parallelize ov

worker threads

N\~
N\~

parameters via RAM

N 0

o

NGRIABY | N

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Why need new Big ML systems?
f Systems View:

y

02 Shotgun with 4 machines flies away! e Focuson

<~ Shotgun with 2 machines ¢ high iteration throughput (more iter per sec)
Single machine (shooting algorithm) o 5trong fault-tolerant atomic operations,
e Dbut assume ML algo is a black box
e ML algos “still work” under different
execution models
0.1 | o “easy to rewrite” in chosen abstraction
0 0.5
Agonistic of ML properties and objectives Synchronization model
in system design _.,
= -b -b -P-b-#-b-b-*
Q? | = O mmmmm
/> ') =) m) m))
(X
Lar e updat
) - mesgsag':aae
o im"g:dd' Programming model

Non-uniform Dynamic Error
convergence structures tolerance

o

ﬂ

—
TS

Laboratory for SI atistical Arlm(nl InteLligence & INtegrative Genomics

Why need new Big ML systems?

MLer’s view

e Focus on
e Correctness
o fewer iteration to converge,

e but assuming an ideal system, e.g.,
e zero-cost sync,
e uniform local progress

for (t =11toT) {
doThings()

parallelUpdate(x,0)

doOtherThings()
}

~

Oversimplify systems issues

e need machines to perform
consistently

e need lots of synchronization

\- or even try not to communicate at a&

Systems View:

e Focus on
¢ high iteration throughput (more iter per sec)
e strong fault-tolerant atomic operations,

e Dbut assume ML algo is a black box

e ML algos “still work” under different execution
models

o ‘“easy to rewrite” in chosen abstraction

-

e p——
3 = 3 or iryindra v
- e mp

~

/Oversimplify ML issues and/or
ignore ML opportunities

ML algos “just work” without proof
» Conversion of ML algos across

different program models (graph
_ programs, RDD) is easy

N¢ . I

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Solution:

\) \)

o

Machine Learning Models/ Algorithms

» Graphical °* Nonparametric + Regularized - Sparse Structured . * Spectral/Matrix
Models Bayesian Models Bayesian Methods Large-Margin |/ Regression ° De€eP Learning Methods . Others

RN

Hardware and infrastructure

* Network switches + Network attached storage « Server machines « GPUs * Cloud compute - Virtual Machines m

* Infiniband * Flash storage » Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

5%)
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Solution: An Alg/Sys INTERFACE for Big ML

I I — { R =3 ; § h /
s ‘ - Ko 1 (7,
= = r 3 o " |
| - “ \ - - ; e .

:) 3 ‘ f

Machine Learning Models/ Algorithms

* Nonparametric < Regularized - Sparse Structured . * Spectral/Matrix
Bayesian Models Bayesian Methods Large-Margin |0 Regression ° Sparse Coding Methods « Others

Hardware and infrastructure

* Network switches « Network attached storage * Server machines + GPUs * Cloud compute - Virtual Machines
* Infiniband * Flash storage * Desktops/Laptops (e.g. Amazon EC2)
* NUMA machines

€Yn

| lhor atory for Statistical Artificial InteLligence & [N(cpr ative G(NOmics

The Big ML “Stack” - More than just
software

‘ Degree of parallellsm, convergence analysis, sub-sample
kTheory complex1ty :

P —
(Representation: Compact and informative features)

—\

O/ M d l' Generic building blocks: loss functions, structures,
\ odel: constraints, priors ..

—

System Building Blocks

Parallelizable and stochastic MCMGC, VI, Opt, Spectrum

C(Algorithm:

—~ 1 High: Matlab/R
G (Programmmg model & Interface: Mecdium: c/java) —

Low: MPI

—
Distributed architecture: DFS, parameter server, task
‘, \System: scheduler..)) p

—\ /
C \]‘]a]‘dwa]‘e: GPU, flash storage, cloud ... =

N

R
ﬁw SEEING E |
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Iterative-Convergent

Markov Chain Monte Carlo

Optimization

Laboratory for Statistical Art €nomics

A General Picture of ML

Iterative-Convergent Algorithms
/\ Updates

Read +
—t Read Write

— —
— |
c~—) —

v Iterative Algorithm
v] |A =A4D D) At-1)

D AV =F (A(t_l)’ A) Model Parameters

Data F() ¢r%?1':f%?:§) at iteration (t-1)

Intermediate Updates

N Q

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

e Optimization programs:

Al d .

A

>

A huge number of parameters

A huge volume of data (e.9.) J=1B
(e.g)N=1B

<

- IS Al FABY |
K@ RS
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Challenge

* Probabilistic programs

—d1

N |+ Bu
z; ~ P(2di = k|rest oc—{—oz o
o~ plas = Hrest) o o] D o)

topic

word (~ 1M)

doc
(~1B)

topic topic
(~ 1M)

3\ 2 1\
/@ SIRE 23 .

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

A Dichotomy of Data and

Model mﬁML Programs
Ol = gt + A4O(D

8
E i —

edu‘“é‘“atlor / N

ﬂ

‘,V\l
REY

lAfI] H ce & INtegrative Gen

A chhotomy of Data and

0=10",6,7,....6"
Model Parallel

AH(Dl)/

I.llUUb St

/@ SIRE 23 .

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Good Parallelization Strategy
IS important

ML on
epoch m

Write Write Write Write
outcome to outcome to outcome to outcome to
KV store KV store KYV store KV store 8000
7000
& 6000
Barrier ? g 5000 |
© 4000 -

parallelUpdate(x,0)
doOtherThings()

}

for (t=11toT) {
doThings()
\\\\\\\\\\\\\\\::

&

© 3000

m -
Collect fggﬁ :
outcomes and Do nothing Do nothing el Do nothing 0 4
aggregate

0.2

0.1

0.5

B Network waiting time

n Compute time

Y AINCRIAEY A

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Usually, we worry ...

A sequential program A parallel program

b1

!
B

Sync

Unequal m i b
. . performance M{mﬂ A
e but assuming an ideal system, e.g., J
e 2zero-cost sync,
e zero-cost fault recovery Low bandwidth,
. High delay
e uniform local progress
[

ML Computation vs. Classical

Computing Programs

ML Program: Traditional Program:
optimization-centric and operation-centric and
K iterative convergent deterministic

~

(e gE i m A
Traditional Data Processing

needs operational correctness

Example: Merge sort
116 7|13 S|4 8[| 2

' ' { '
116 3|7 4|5 2|8

N/
1/3]|6]7 1TEH B
'S

h | Soring
1[3]4]5][6|7 B 8 | < afters

Error persists and .’
- M/

/@ ING] L)
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

ML Algorithms can Self-heal

o

& L A)
Labora r ntelLligence & INtegrative Genomics

ratory for Statistical Artificial I

Intrinsic Properties of ML Programs

e MLis
algori

e Err
errc

e Dyr
cha
criti

e Noi
can

e Wher
guare

* How do existing platforms fit the aove?

Laboratory for Statistical Artificial InteLligence & INtegrative Genc

Efficient and correct
ML programming is nontrivial

e ML is very effective under non-blocking, bounded-asynchronous
communication, but how to ensure correct dependencies?

ML programs are “stateful” --- model state 6 updated every
iteration; (fresh) auxiliary local variables, e.g. summary
statistics, needed at each parallel worker

* Big ML programs can require explicit partition and scheduling

e An ideal ML programming interface should make it easy to write
correct data-parallel, model-parallel ML programs
» Abstract away inter-worker communication/synchronization
» Abstract scheduling away from update equations
» Abstract away worker management

 |deally, programmer does just 3 things: declare model, write updates, write
schedule

R
€T b N
Laboratory for St

tatistical Artificial InteLligence & INtegrative Genomics

What does an ML programmer need?

First-timer’s ideal view of ML High-performance implementation
global model = (a,b,c,...) Many considerations
global data = load(file) » What data batch size?
Update(var a): e How to partition model?

a = doSomething(data,model) * When to sync up model?

: » How to tune step size?
Main:

do Update() on all var in * What order to Update()?

model until converged

1000s of lines of extra code

Goal: system that can be programmed like “ideal view”, yet
yields state-of-the-art performance

\)

(8¢

o

"T\
NGRIraBy

or Statistical Artificial InteLligence & INtegrative Genomi

Issues with Hadoop and
|-C ML Algorithms

Iteraiion 1 Iteration 2

Distributed File System

Distributed File System

< Distributed File SysteD

Image source: dzone.com
HDFS Bottleneck

Naive MapReduce not best for ML

e Hadoop can execute iterative-convergent, data-parallel ML...
o map() to distribute data samples i, compute update A(D,)
o reduce() to combine updates A(D,)
o Iterative ML algo = repeat map()+reduce() again and again
e But reduce() writes to HDFS before starting next iteration’s map() - very slow iterations!

@
&2
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics s l

Spark: Faster MapR on Data-Parallel

e Spark’s solution: Resilient Distributed Datasets (RDDs)
o Input data — load as RDD — apply transforms — output result
o RDD transforms strict superset of MapR
o RDDs cached in memory, avoid disk I/O

RDD(1
)) "R - o
o ™
Memo
| " E 1 60 . —
Input Data Resident RDD(2 RDD(Output - T
:: : : : c _
HDFS Text/ | Map |teration 1 Memory Iteration N Memory Map) HOFS Text/ 9 120 8 (,8 N
| e
Squence Resident Resident Squence © 80 4 = © (g
Files Files o .
RDD(1 = 40 - -
™
Not L/ L/ w O
Memo!
Resmex \ Can be il to disk Hadoop HadoopBM Spark
\ / \ or recreated on read Logistic Regression

e Spark ML library supports data-parallel ML algos, like Hadoop
o Spark and Hadoop: comparable first iter timings...

o But Spark’s later iters are much faster @
\ Source: ebaytechblog.com /

/@ SR Y, 72

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

GraphLab: Model-Parallel via Graphs

e GraphLab Graph consistency models
o Guide search for “ideal” model-parallel execution order
o ML algo correct if input graph has all dependencies

Full Consistency

¢oge ConSiStenCy

e GraphlLab supports asynchronous (no-waiting) execution
o Correctness enforced by graph consistency model
o Result: GraphLab graph-parallel ML much faster than Hadoop

\ Source: Low et al. (2010) @/

%uuz«

A New Framework for Large Scale
Parallel Machine Learning

(Petuum.org)

/® GLIRY . A

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Petuum Overview

e Key modules ‘ ML application library

o KV-store
for data-parallel ML algos

Data-Parallel API

o Scheduler

for model-parallel ML algos Bounded-Async

KV-store (Bosen)

Dynamic Scheduler
(Strads)

Model-Parallel AP | !

YARN (resource manager, fault
tolerance)

e “Think like an ML algo”

o ML algo = (1) update equations + (2) run those egns in some order

N Q

/@ S RX ! A

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

High Efficiency

e Petuum makes ML apps more efficient

e Versus Spark MLIib v1.3, Petuum is faster by
» 8x on Logistic Regression for CTR and Event Prediction
* 100x on Topic Modeling for User Profiling
e 20x on Lasso Regression for Genetic Assay Analysis
e Scale: 10-100 machines, GBs-TBs of data

» Versus specialized implementations

Topic Modeling (LDA) Sparse Logistic Regr.
50 machines (800 cores) 8 machines (512 cores)
1000 topics 3000
4500
4000 2500
. 3500 - Z 2000 -
€ 3000 5
§ 2500 - k3 1500
\:’—; 2000 - g 000 L -
£ 1500 - =
= 1000 500 s
500
0 - 0 -
Petuum YLDA Petuum Shotgun

e Distributed Convolutional Neural Network built on Caffe: Train Alexnet
(60m parameters) in under 24 hours, on 8 GPU machines @

o

/@ SIRE 23 .

5%)
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

(Med)LDA

Web-scale analysis of
docs, blogs, tweets

SVM

General-purpose
Classification

Kalman

Kalman Filters for
aviation control,
dynamic system
prediction

Lots of Advanced Apps

Regression

Linear and Logistic

for intent prediction,
stock/future hedging

Ising
Model power and
sensor grids

SC

Sparse Coding for
web-scale, million-

class classification

(N)MF

Collaborative
Filtering for
recommending

movies, products

SIOR

Genome-wide
association, stock/

future hedging

Metric

Distance Metric
Learning to boost

large-scale
classification

©

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

“PETUUM

principles, design, and theory

e Key insight: ML algos have special properties
o Error-tolerance, dependency structures, uneven convergence
o How to harness for faster data/model-parallelism?

Laboratory for

N “

Data-Parallel Stochastic

Gradient Descent
Consider: mjn 43{]0(337 d)}

X

2D 2O — v, f(20), d;)

SPG:

Parallel SGD [zinkevich et al., 2010]; Partition data to different workers; all

workers update full parameter vector

1
split ‘ 'Sgt“at] N Ur())?aAtELIC;OC::L::SPY aggregate
1
B o ot
j S

Update ALL
params

PSGD runs SGD on local copy of params in each machine

©

(@S IRE AR . A

aboratory for Statistical Artificial InteLligence & INte .

There Is No Ideal Distributed
System!

» Two distributed challenges:
* Networks are slow
» “Identical” machines rarely perform equally

Unequal % J\-ﬁ.ﬂ % L'VW ,
performance M{Iﬂﬂ /1 Compute vs Network

LDA 32 machines (256 cores)

8000 T
7000 A
Low bandwidth, 6000 -
High delay = 5000 - u Compute time
Q 4000 -
@)
L 3000 A
N
2000 T
1000

B Network waiting time

/@@IL - I

Or Statistical Artificial InteLligence & INtegra

How to speed up Data-
Parallelism?

» Existing ways are either safe but slow, or fast but risky

e Challenge 1: Need “Partial” synchronicity
» Spread network comms evenly (don’t sync unless needed)
» Threads usually shouldn’t wait — but mustn’t drift too far apart!

» Challenge 2: Need straggler tolerance
» Slow threads must somehow catch up

Async

Thread 1

o I"’I '?’_.I <) I::::::::::.,'.’.’.:’;:"’
?7?

N NN

Thread 4

\ I; A SprK Is persistent memory really necessary for ML? @

ﬁ@ﬁ <

o

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

High-Performance Consistency Models

Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson,

fo r F aSt D ata - P ara I I e I i SIM\ G R Gangerand E. P Xing. More Effective Distributed ML via a

Stale Synchronous Parallel Parameter Server. NIPS 2013.

Staleness Threshold 3 - : -—b =>

: : ' : 33331 o))))
Thread I 1 > e ¢ g drury

! : I ! . Dy mpmpmp

: | I : .

i i i Thread 1 will always see
Thread 2 ‘ : : I : :> these updates
Thread 3 E

: : I : - Thread 1 may not see
Thread 4 * I : these updates (possible error)

: : I :

%

1 2 3 4 5 6 7 8 9 Iteration
Stale Synchronous Parallel (SSP)

* Allow threads to run at their own pace, without synchronization
+ Fastest/slowest threads not allowed to drift >S iterations apart
* Threads cache local (stale) versions of the parameters, to reduce network syncing

Consequence:

+ Asynchronous-like speed, BSP-like ML correctness guarantees

o

* Guaranteed age bound (staleness) on reads @
+ Contrast: no-age-guarantee Eventual Consistency seen in Cassandra, Memcached /

~

ﬁ@ﬁ <

Laboratory for Statistical Artificial Im(lh sence & INtegrative Genomics

B OS e n u Q. Ho, J. Cipar, H. Cui, J.-K. Kim, S. Lee, P. B. Gibbons, G. Gibson, G. R. Ganger and E. P. Xing. More
. . . .

Effective Distributed ML via a Stale Synchronous Parallel Parameter Server. NIPS 2013.

a bounded async key-value store

* Put global parameters in BA-

. ()
KVS. Examples: @ S
o Lo &8
N F L ?5\0'@
* Topic Modeling (MCMC) Topic 1
Topic-word table Topic 2
Topic 3 ;
. . . Topic 4 /
» Matrix Factorization (SGD)

Factor matrices L, R

 Lasso Regression (CD)
Coefficients 3

o ADSM Ul: | vpdatevar(s) {
delta = f(old)
}
e Supports many classes of

algorithms
\ * Above are just a few examples

ﬁ@ﬁ <

aboratory for Statistical Artificial InteLligence & INtegrative Genomics

Convergence Theorem

W. Dai, A. Kumar, J. Wei. Q. Ho, G. Gibson and E. P. Xing, High-Performance Distributed ML
at Scale through Parameter Server Consistency Models. AAAl 2015.

« Goal: minimize convex f(x) = X3, fi(x

(Example: Stochastic Gradlent)
e L-Lipschitz, problem diameter bounded by F?

o Staleness s, using P threads across all machines

» Use stepsize = ; witho = L\/Q(I:—i-il)P

e SSP converges according to
 Where T is the number of iterations

Difference between
SSP estimate and true optimum

A
(A\

- ¢ <
%Z fdiw} — f(x*) < 4FL\/-’('* ;1)13

* Note the RHS interrelation between (L, F) and (s, P)
* An interaction between theory and systems parameters

\ » Stronger guarantees on means and variances can also be proven @/

= [76\
/@ SRINIE

-9.00E+08

-9.50E+08

-1.15E+09

Log-Likelihood

-1.20E+09

o

0

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Enjoys Async Speed, But BSP

Guarantee across algorithms

e Massive Data Parallelism

» Effective across different algorithms

LDA on NYtimes Dataset

LDA 32 machines (256 cores), 10% docs per iter

2

0

400 6

T T
0 1200 1400 1600 1800

Objective function versus time
Lasso 16 machines (128 threads)

2000 4.80E-01

-1.00E+09 7

-1.0SE+09 7

-1.10E+09 7

——

/H.__—'—
i~

-1.25E+09 7

-1.30E+09 —

Seconds

LDA

v =
e

~*#=BSP (stale 0)
“#stale 32

i async

T T T

4.70E-01

4.60E-01

Objective

4.40E-01

4.30E-01 7

4.20E-01

4.50E-01

—*=BSP (stale 0)
“stale 10
“*stale 20
—““stale 40

“=stale 80

0 500

\.‘

1500 2000

Seconds

LASSO

2500

3000 3500

4000

1.40E+09 1
1.20E+09
1.00E+09

S

£ 8.00E+08

Q
2°6.00E+08
o

4.00E+08
2.00E+08
0.00E+00

MF 32 machines (256 threads)

~

Objective function versus time

~*=BSP (stale 0)

“stale 7

1000

Seconds

1500 2000

Matrix Fac. @/

ﬁ gi ﬁ . o —S8SP

ical Artificial InteLligence & INteg 0.4} |—ESSP

BAP Data Parallel:

0.2

(E)SSP Probability Bound p.ica.205 o

—90-9 -8-7-6-5-4-3-2-1 0
Clock Differential

Let real staleness observed by system be 7t
Let its mean, variance be 1, = E[y], 0y = var(v)

Theorem: Given L-Lipschitz objective f,; and stepsize h,

(X 1 F*? —Tr?
P [R[| — (ULQ + — + 277L2u7) > 7'] < exp T }
Ul

T VT 270, + 2nL2(2s + 1) Pr
Gap between current Penalty due to high Penalty due to high
estimate and optimum avg. staleness u,,,, staleness var. o,
2714
) T ~ — _ L (InT+1)
RIX] = Zt:1 fe(ze) — f(x™) nr = T — O<T)

Explanation: the (E)SSP distance between true optima and current
estimate decreases exponentially with more iterations. Lower staleness
mean, variance kv ,%y improve the convergence rate.

Take-away: controlling staleness mean #, variance o+ (on top of max
\ staleness s) is needed for faster ML convergence, which ESSP does. @

ﬁ\ MF, Convergence per seconc\
& gi | Ef | (1o (10% minibatch)

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics v T

SSP s=0

Steadier convergence

200 400 600 800
Seconds

Theorem: the variance in the (E)SSP estimate is
Var ;.1 = Var; — 2n.cov(x, EA¢ g¢]) + O(n:&y)
+O(n;pi) + 02,

where
cov(a,b) := Ela’b] — Ela’]E[b]

and O3, represents 5th order or higher terms in 7t

Explanation: The variance in the (E)SSP parameter estimate monotonically
decreases when close =~ an optimum.

Lower (E)SSP stalenes.,y ¢ => Lower variance in parameter => Less oscillation

in parameter => More confidence in estimate quality and stopping criterion. @

® 32 vRBy
/@ NG}
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Challenges in Model Parallelism

min|ly = X3l + A > _ |8,
J

Model

A A
N Yl = x
J
v
€ > * Within group — synchronous
J (i.e., sequential) update
A huge number of parameters I) L"tzgimu" — asynchronous
(e.g.) J = 100M P

)

% ! L)
K@” S INI¢
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Model Dependencies in Lasso

e Concurrent updates of @ may induce errors

Sequential updates

b1
‘1’ R
b2

Concurrent updates

51 Ba

7

Induces parallelization error

(t) — S(le —

[e . .. Sync
51 B2
before updating

Need to check x,x,

parameters

Xlszﬁét_l)

)

)

/@@IL - I

Or Statistical Artificial InteLligence & INtegra

How to speed up Data-
Parallelism?

» Existing ways are either safe but slow, or fast but risky

 Challenge 1: need approximate but fast model partition

» Full representation of data/model, and explicitly compute all
dependencies via graph cut is not feasible

 Challenge 2: need dynamic load balancing
» Capture and explore transient model dependencies
» Explore uneven parameter convergence

Graph Partition < > Random Partition

227

Is full consistency really
necessary for ML?

/@S RE G . A

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Structure-Aware Parallelization
(SAP)

S
data
partition
~—
S
model schedule () {
partition // Select U vars x[j] to be sent
S // to the workers for updating
worker a o . .
1€ = ST (b 15 T PR S nce 5 R])
}
S
data push (worker = p, vars = (x[j_11,...,x[]J_U])) {
partition // Compute partial update z for U vars x[j]
e // at worker p
model return z
partition }
~—
pull (workers = [p], vars = (x[j_1],...,x[3_U])
worker updates = [z]) {
// Use partial updates z from workers p to
e // update U vars x[]j]. sync() is automatic.
data }
partition
~—
f—- O Smart model-parallel execution: O Simple programming:
partition O Structure-aware scheduling O Schedule()
\/ - - - - -
QO Variable prioritization O Push()
\ worker U Load-balancing O Pull() @

/@ SR) :

Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Structure-aware Dynamic Scheduler

S T R A D S S. Lee, J.-K. Kim, X. Zheng, Q. Ho, G. Gibson, and E. P. Xing. On Model Parallelization and
Scheduling Strategies for Distributed Machine Learning. NIPS 2014.

/" STRADS I

Check All Variables Priority Scheduling
Variable
Dependency
2
. (t—1)
Generate Sample Variables {BJ} <5ﬁj 1
Blocks of [€ ;
\ Variables to be Updated ~ p(/)
» Block scheduling
Blocks of variables
) B |) I By V. | Vs
orker
_ I . I . SynC, U] 1
r I 4 4 < barrier
Worker 2 I l] Uy he:
) I I —
g Z‘(l)
Worker 3]] :] : '::> Us &
(((h [Kumar, Beutel, Ho and Xing, Fugue:
Slow-worker agnostic distributed
Worker 4 !]]] !)_> learning, AISTATS 2014]

1]
\ Round 1 Round 2 Round 3 Round 4) @

KE@@ IL .

al Artificial InteLlig & INtegrative Gen

Comparison:
p-scheduling vs. u-scheduling

U Priority-based scheduling converged faster than the baseline
with random scheduling

100M features
9 machines

0.25 7|

o
\o}
|

Obijective
o
&
3.
<

b
-
=
o
=
=

.:
-
|

0.05 .
Initialization phase 0 500 1000 dep. checker
to make a sampling e Seconds

istribution p(j) ~ 56(t i t
 dti #57) e,

K&)@ IL .

Or Statistical Artificial InteLlig & INtegrative Geny

Dynamic Scheduling Leads to

For P parallel workers, M-dimensional data
Let p be the spectral radius of X

Theorem: the difference between the STRARD estimate
and the true optima is

Gap between current SAP explicitly minimizes p, ensuring
parameter estimate and optimum as close to 1/P convergence as possible

‘ 1T o) 1 1
]E[x®) _ X*]<)~ _o(—=

F a S te r ‘ O n Ve r e n Ce E Xing, Q Ho, W Dai, J Kim, J Wei, S Lee, X Zheng, P Xie, A Kumar, Y Yu, Petuun:
A New Platform for Distributed Machine Learning on Big Data, KDD 2015

Explanation: Dynamic scheduling ensures the gap between the
objective at the t-th iteration and the optimal objective is bounded

by © (P%) which decreases as ¢ — oo . Therefore dynamic
scheduling ensures convergence.

~

o

R
/ﬁ%éi IN¢ L) \\\
Laboratory for Statistical Artificial InteLligence & INtegrative Genomics

Dynamic scheduling is close to ideal

Let 5*éee!() be an ideal model-parallel schedule

Let Bz-(filal be the parameter trajectory by ideal schedule
Let 5 be the parameter trajectory by dynamic schedule
Let ¢ x PL?

Theorem: After t iterations, we have

2M

X 'X
(t+1)2

B[, — B N <C

rdeal

Explanation: Under dynamic scheduling, algorithmic progress is
nearly as good as ideal model-parallelism. Intuitively, it is because
both ideal and dynamic model-parallelism seek to minimize the
parameter dependencies crossing between workers.

. Q

(OQLIE 1y m
Faster, Better Convergence

across algorithms
» STRADS+SAP achieves better speed and objective

2.5M vocab, 5K topics

100M features 80 ranks
9 machines 9 machines -
.25 -----mrrmmmrmmrem st D B X 109 32 machines
—STRADS . —STRADS .
---Lasso-RR _ ---GraphLab
0.2+ *
(0]
=
80.15-
o]
(@]
0.1+
—STRADS
.’ ---YahooLDA
0.05 . T 0.5 T T r -3.5F T T T . 7
0 500 1000 0 50 100 150 0 1 2 3 4 5
Seconds Seconds Seconds % 10*
Lasso MF LDA

©

@ﬁ N{ < I

aboratory for Statistical Artificial InteLligence & INtegrative Genc

Summéry: ML Computing is not
Traditional Computing

Rewiring structures Different parts finish
can foil naive system at different speeds
0
P S
3
Y 2
Q.
1. Self-healing 2. Dynamic-rewiring 3. Uneven pace

A new architecture adapts to the new needs for ML
computing is needed to turbocharge ML performance

. 5)

@ 3

I aboratory for Statistical Artificial InteLligence & INtegrative Genomics

Acknowledgements

NGRIABY

[aboratory for Statistical Artificial InteLligence & INtegrative Genomics

.«\/\

Abhimanu
Kumar

Jinliang Wei
. . Seunghak Lee Xun Zheng
Jin Kyu Kim . Pengtao Xie

Wei Dai

www.sailing.cs.cmu.edu

$$$

Qirong Ho

Garth Gibson

Phillip Gibbons

Greg Ganger

1,'

\& ul

James Cipar

Q

