Can DRAM Do More Than Just Store Data?

Vivek Seshadri Final Year Ph.D. Student Onur Mutlu, Todd C. Mowry Phillip B. Gibbons, Michael A. Kozuch

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing

Can DRAM do more?

Outline of the Talk

1. Gather-Scatter DRAM

accelerating strided access patterns

2. RowClone

- bulk data copy/initialization in DRAM

3. Bulk bitwise AND/OR in DRAM

Strided Access Pattern

Physical layout of the data structure (row store)

Shortcomings of Existing Systems

Data unnecessarily transferred on the memory channel and stored in on-chip cache

Cache Line

High Latency

Wasted bandwidth

Wasted cache space

High energy

Goal: Eliminate Inefficiency

Can we retrieve a cache line with only useful data?

DRAM Modules of Multiple Chips

All chips within a "rank" operate in unison!

Challenge 1: Chip Conflicts

Data of each cache line is spread across all the chips!

Useful data mapped to only two chips!

Challenge 2: Shared Address Bus

All chips share the same address bus!

No flexibility for the memory controller to read different addresses from each chip!

One address bus for each chip is costly!

Gather-Scatter DRAM

Column-ID-based Data Shuffling

(minimizing chip conflicts – for 2ⁿ strides)

Pattern ID – In-DRAM Address Translation (flexible column selection for different strides)

Column-ID-based Data Shuffling

Gather-Scatter DRAM

Column-ID-based Data Shuffling

(minimizing chip conflicts – for 2ⁿ strides)

Pattern ID – In-DRAM Address Translation (flexible column selection for different strides)

Per-Chip Column Translation Logic

Gather-Scatter DRAM (GS-DRAM)

Leveraging GS-DRAM

- On-chip Cache Support
 - identifying non-contiguous cache lines
 - maintaining cache coherence
- ISA support
 - new load/store instructions with pattern
 - x86 (new address mode with pattern)
- Software support
 - specify data structures (pages) that require shuffling
 - convey pattern ID to processor using new load/store instructions

Methodology

- Gem5 x86 simulator
- Use "prefetch" instruction to implement pattern load
- 32KB L1 D/I cache
- 2MB shared L2 cache
- Main Memory: DDR3-1600, 1 channel, 1 rank, 8 banks
- FR-FCFS scheduling policy
- GS-DRAM: support for stride of 8

Evaluation: In-memory Databases

Transaction Throughput and Energy

📕 Row Store 🛛 🔲 Column Store 🔄 GS-DRAM

Analytics Performance and Energy

🛛 Row Store 🛛 🔲 Column Store 🔄 GS-DRAM

Hybrid Transactions/Analytical Processing

Gather-Scatter DRAM: Summary

- Many data structures exhibit multiple access patterns
 - Only one access pattern has good spatial locality

- Gather-Scatter DRAM
 - memory controller gathers/scatters strided accesses
 - near ideal bandwidth/cache utilization for 2ⁿ strides

- In-memory databases
 - GS-DRAM provides the best of both a row store and column store

Outline of the Talk

1. Gather-Scatter DRAM

accelerating strided access patterns

2. RowClone

- bulk data copy/initialization in DRAM

3. Bulk bitwise AND/OR in DRAM

DRAM Cell Operation

DRAM Cell Operation

RowClone: In-DRAM Bulk Data Copy

RowClone: Summary of Results

- Bulk Row-to-Row Copy (8KB)
 - 11X reduction in latency
 - 74X reduction in energy
- 8-core systems
 - 27% performance
 - 17% memory energy efficiency

Outline of the Talk

1. Gather-Scatter DRAM

accelerating strided access patterns

2. RowClone

- bulk data copy/initialization in DRAM

3. Bulk bitwise AND/OR in DRAM

Triple-Row Activation

Triple-Row Activation

Bulk Bitwise AND/OR in DRAM

Result = *row A* **AND/OR** *row B*

- 1. Copy data of *row A* to *row t1*
- 2. Copy data of *row B* to *row t2*
- 3. Initialize data of *row t3* to 0/1
- 4. Activate rows t1/t2/t3 simultaneously
- 5. Copy data of *row t1/t2/t3* to *Result row*

Use RowClone to perform copy and initialization operations completely in DRAM!

Throughput of Bitwise Operations

--In-DRAM (Cons.) (1 bank)
--In-DRAM (Aggr.) (2 banks)

In-memory Bitmap Indices

- Predicates for records stored as bitmaps (e.g., age > 18)
- **Bitwise operations to evaluate query conditions**
- FastBit: real-world bitmap implementation
 - Bitwise OR: 33% of execution time for some queries
 - In-DRAM mechanism: 30% performance improvement

10.1109/LCA.2015.2434872, IEEE Computer Architecture Letters

IEEE COMPUTER ARCHITECTURE LETTERS

Fast Bulk Bitwise AND and OR in DRAM

Vivek Seshadri*, Kevin Hsieh*, Amirali Boroumand*, Donghyuk Lee*, Michael A. Kozuch[†], Onur Mutlu^{*}, Phillip B. Gibbons[†], Todd C. Mowry^{*}

*Carnegie Mellon University

[†]Intel Pittsburgh

Abstract—Bitwise operations are an important component of modern day programming, and are used in a variety of applications such

Summary

- DRAM can be more than a storage device
- In-DRAM techniques
 - Bulk data copy/initialization
 - Gather/Scatter strided access patterns
 - Bulk bitwise AND/OR operations
- High performance at low cost
 - Order of magnitude improvement in performance
 - Changes only to the peripheral logic

Can DRAM Do More Than Just Store Data?

Vivek Seshadri Final Year Ph.D. Student Onur Mutlu, Todd C. Mowry Phillip B. Gibbons, Michael A. Kozuch

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing