Scaling Up Clustered Network

Appliances with ScaleBricks
. -

o

Dong Zhou, Bin Fan, Hyeontaek Lim, David Andersen
Michael Kaminskyt, Michael Mitzenmacher**
Ren Wangt, Ajaypal Singh#

Carnegie Mellon University, TIntel Labs
** Harvard University, ¥Connectem, Inc.

. Intel Science & Technology
http://www.istc-cc.cmu.edu/ Center for Cloud Computing

Scaling Up Clustered Network Appliances

Previous cluster
architectures
(e.g., RouteBricks)

FIB scaling ScaleBrick
* More endpoints & flows calebricks

Updating scaling \ Focus of this talk
* Higher update rates

Throughput scaling
* Higher bandwidth & more ports

Motivation: Network Appliance in LTE

. Internet
. Rl ‘/
- :

Base station A /
LTE-to-Internet gateway E I][Iﬂ rE ﬂﬂﬂ =

Cluster 4
interconnect)

-y

)

Motivation: Network Appliance in LTE

.@ Internet
Base station A A A

Possible
Upstream

downstream

N\ N\
LTE-to-Internet gateway r\= ||n ||n

Ingress node

S
Handling node for X \

Cluster 4 Traffic is forwarded
\interconnect) to handling node

e

Externally imposed requirements!

FIB (forwarding table)

Fully Duplicated FIB

[

La" x5p3 | Desti x3p3
y>C1 Y>C1
z->B2 | Node | z-B2

v | N Port
X->B3 ode X->B3
Y>C1 Y>C1
758y | Node <5572

Node D

Full FIB on every node

We want:
FIB scales
with more nodes

V)
Cluster N
Interconnect

+ 1-hop forwarding
- No FIB scaling

Hash Partitioned FIB

Random partition of FIB
FIB (forwarding table) g

- determined by hashing
Label Destination X _
| E.g., hash(Label X) = Node C
%“>2 Node B: Port 3
Y Node C: Port 1 We want:
X8B3 | Node beror Node A FIB scales
with more nodes

without indirection

(__>r /7 ClustermmR r/ “\n_><_
Interconnect

Node D Node B
Node C may havn FIB entries + FIB scaling
whose handling node .
- Indirection

is not Node C

FIB Scale-Out on Cluster Architectures

* Does the cluster provide FIB scaling with more nodes?
* Does the cluster require indirection that adds overhead?

Architecture FIB Scaling Indirection
Full Duplication No No
Hash Partitioning Yes Yes
D 34% lower latency
ScaleBricks Yes No

Scaling through 4-32 nodes
10% lower latency & 23% higher throughput

X->B
. Y->C
ScaleBricks 58
FIB (forwarding table) Global Partition Table (GPT)

& Deterministic partition of FIB
that matches handling node

la' &7 | Desti Gbr
[. Nodel[.. B

node-ggpf

GPT GPT |
« DAav:)
ysc1 | Node Pyl

Z->B2

+ FIB scaling
Node A+ No indirection
? How to build GPT

/"\’ N

oSER— o0 s

Interconnect
Node D

Handling node of
Node B’s FIB entries
is also Node B

Designing Global Partition Table (GPT)

* GPT should be very small

— Every node has GPT containing every FIB entry’s handling node info.

e Strawman solution: Hash table Hash table-based GPT
FIB (forwarding table) Key Value
Label Destination
X Node B: Port 3 Storing keys A VA B
Y Node C: Port 1 required to avoid
7 Node B: Port 2 key collisions Q X B
Y C

 Most table space is taken by keys
— E.g., 104-bit keys (5-tuple labels) vs. 2-bit values (4 cluster nodes)

* |sthere a way to remove keys while avoiding collisions?

Our Solution for GPT: SetSep

* Practical set separation data structure
— Do not store keys
— Brute force to avoid “value” collisions (instead of key collisions)

FIB (forwarding table) SetSep-based GPT
Label Destination Key @ Value
X Node B: Port 3 X,Z,... B
Y Node C: Port 1 Y,.. C
Z Node B: Port 2 .
hash := H;,

Value collision & Try next hash function

No value collision = Use this hash function (“H;,,”) & value array as GPT

No Key Existence Test in SetSep

Data structure Existent key Nonexistent key
Hash table Correct value “Key not found”
SetSep Correct value Arbitrary value

* Mitigating arbitrary return values
— Tolerate arbitrary values for nonexistent keys; or
— Use additional data structures to detect nonexistent keys

* ScaleBricks uses partial FIB to detect nonexistent keys

Making SetSep Fast

* Construction time problem
— Exponentially increasing # of trials with more entries and wider values
— 16->32 entries, 1-bit values: Up to 21° times slower
— 16 entries, 1->2-bit values: Up to 21® times slower

* SetSep solutions to achieve linear construction time
— Two-level hashing to divide entries into small, evenly-sized sets
— Separate hash functions to encode individual value bits

See our SIGCOMM 2015 paper for more details

* Trading space for faster construction by using sparser value array
 Fast generation of many hash functions

* Fast batched lookups with memory prefetching

Main Properties of SetSep

* Compactsize
— 0.5+1.5[log,(node count)]| bits/entry
— E.g., 3.5 bits/entry for 4 nodes

* Reasonably fast construction

— 0.24 million entries/sec (1 thread)

* Fast lookup
— 520 million lookups/sec (16 threads)

Evaluation Overview

* Full-system forwarding performance
e Scalability analysis

* Setup

— Modified Connectem’s LTE Evolved Packet Core stack
* Using Intel DPDK

— Traffic generated by Spirent SPT-N11U Ethernet testing platform

— 4x commodity server nodes
e 2x Intel Xeon E5-2697 v2 (30 MiB L3 cache)
* 2x Intel 82599ES (dual-port 10 GbE NIC)

— 10 GbE hardware switch as cluster interconnect

Latency (us)

End-to-End Latency with 4 Nodes

N
(o0]

N
W

33 e e R

| 5 B8 Full Duplication

SRR R e V-V ScaleBricks
' : : > Hash Partitioning

Reduced by 34% <— GPT avoids indirection

. : — Low latency

) iReduced by 10%

[r pr—— e Why is ScaleBricks also
faster than full duplication?
; ; (both avoid indirection)

cull DURNCAtON galeBHCkS | pgriciontfid

Per-Node Throughput

15
u 14f — . oy .
=y - ScaleBricks exhibits
= 13 i
= —— graceful tput decrease
3 12t
N
g 11 . .
E — ScaleBricks begins to
il B 5 | 5 5 5 slow with larger FIB than
;‘ """""""" B S o full duplication does
] L]
A—A Full Duplication
1 [V-V ScaleBricks 1
0 i i i . . .
M 2M 4M 8M 16M 32M

of FIB Entries

ScaleBricks’s partial FIB is smaller than full FIB
—> More FIB entries fit in CPU L3 cache
— Higher throughput & lower latency

Millions of FIB entries

70

60}

50

40}

30}

20}

10f

0
0

Scalability Analysis

Aggregate FIB size when each node uses 16 MiB of memory

= = Hash Partitioning ¢
=== ScaleBricks o*
1+ Full Duplication o’

of Servers

«—

III‘IIIIIFIIIIIIIIlIlIIIIlIlIIIIlIl¥lIlIlIIlIlIl
4 812162024283;\

Hash partitioning shows
very good FIB scaling
(at the cost of

latency & throughput)

ScaleBricks offers
FIB scaling
through 4-32 nodes

Full duplication provides
no FIB scaling

Conclusion

* ScaleBricks: Scalable cluster architecture for middleboxes
— Global Partition Table + Partial FIB: FIB scaling without indirection
— 23% higher tput, 34% lower latency, FIB scaling through 4-32 nodes

* SetSep: Compact key-value mapping for small value space
— Skip storing keys, brute force to avoid value collisions
— Small memory overhead, fast lookup, good construction speed

* Applications
— Clustered network appliances with flow pinning
— We are looking for other cool applications of ScaleBricks and SetSep!

