
Dong Zhou, Bin Fan, Hyeontaek Lim, David Andersen
Michael Kaminsky†, Michael Mitzenmacher**
Ren Wang†, Ajaypal Singh‡

Carnegie Mellon University, †Intel Labs
**Harvard University, ‡Connectem, Inc.

http://www.istc-cc.cmu.edu/

Scaling Up Clustered Network
Appliances with ScaleBricks

Scaling Up Clustered Network Appliances

Previous cluster
architectures

(e.g., RouteBricks)

ScaleBricks

Throughput scaling
• Higher bandwidth & more ports

FIB scaling
• More endpoints & flows

Updating scaling
• Higher update rates

Focus of this talk

Motivation: Network Appliance in LTE

Internet

Base station

LTE-to-Internet gateway

Cluster
interconnect

Motivation: Network Appliance in LTE

Internet

Base station

LTE-to-Internet gateway

Cluster
interconnect

Handling node for X

X

Upstream

Possible
downstream

Traffic is forwarded
to handling node

Ingress node

Externally imposed requirements!

Node D Node B

Node A

Node C

Fully Duplicated FIB

Cluster
Interconnect

+ 1-hop forwarding

X

X

X

X

X

X
Full FIB on every node

Label Destination

X Node B: Port 3

Y Node C: Port 1

Z Node B: Port 2

… …

Y→C1
Z→B2

…

X→B3

Y→C1
Z→B2

…

X→B3
Y→C1
Z→B2

…

X→B3

Y→C1
Z→B2

…

X→B3

FIB (forwarding table)

We want:
FIB scales

with more nodes

- No FIB scaling

Node D Node B

Node A

Node C

Hash Partitioned FIB

Cluster
Interconnect

+ FIB scaling

X

X

X

X

X

X

Node C may have FIB entries
whose handling node

is not Node C

Random partition of FIB
determined by hashing

E.g., hash(Label X) = Node C Label Destination

X Node B: Port 3

Y Node C: Port 1

Z Node B: Port 2

… …

FIB (forwarding table)

Z→B2

X→B3 …

Y→C1

We want:
FIB scales

with more nodes
without indirection

- Indirection

ScaleBricks Yes No

FIB Scale-Out on Cluster Architectures

Architecture FIB Scaling Indirection

Full Duplication No No

Hash Partitioning Yes Yes

Scaling through 4-32 nodes
10% lower latency & 23% higher throughput

34% lower latency

• Does the cluster provide FIB scaling with more nodes?
• Does the cluster require indirection that adds overhead?

Node D Node B

Node A

Node C

ScaleBricks

Cluster
Interconnect

Global Partition Table (GPT)
& Deterministic partition of FIB

that matches handling node

X

X

X

X

X

X

+ FIB scaling
+ No indirection

Y→C

Z→B

…

X→B

Label Destination

X Node B: Port 3

Y Node C: Port 1

Z Node B: Port 2

… …

FIB (forwarding table)

…

GPT

Y→C1

GPT

X→B3
Z→B2

GPT

…

GPT

Handling node of
Node B’s FIB entries

is also Node B

? How to build GPT

Designing Global Partition Table (GPT)

• GPT should be very small
– Every node has GPT containing every FIB entry’s handling node info.

• Strawman solution: Hash table

• Most table space is taken by keys
– E.g., 104-bit keys (5-tuple labels) vs. 2-bit values (4 cluster nodes)

• Is there a way to remove keys while avoiding collisions?

Key Value

Z B

X B

Y C

Label Destination

X Node B: Port 3

Y Node C: Port 1

Z Node B: Port 2

… …

FIB (forwarding table)

Hash table-based GPT

Storing keys
required to avoid

key collisions

Our Solution for GPT: SetSep

• Practical set separation data structure
– Do not store keys

– Brute force to avoid “value” collisions (instead of key collisions)

Label Destination

X Node B: Port 3

Y Node C: Port 1

Z Node B: Port 2

… …

FIB (forwarding table) SetSep-based GPT

Key Value

… …

X,Y,… B,C

Z,… B

hash := H1

Key Value

Y,Z,… B,C

X,… B

… …

hash := H2

Key

X,Z,…

Y,…

…

hash := H372 …

…

Value collision → Try next hash function

No value collision → Use this hash function (“H372”) & value array as GPT

Value

B

C

…

No Key Existence Test in SetSep

• Mitigating arbitrary return values
– Tolerate arbitrary values for nonexistent keys; or

– Use additional data structures to detect nonexistent keys

• ScaleBricks uses partial FIB to detect nonexistent keys

Data structure Existent key

Hash table Correct value

SetSep Correct value

Nonexistent key

“Key not found”

Arbitrary value

Making SetSep Fast

• Construction time problem
– Exponentially increasing # of trials with more entries and wider values

– 16→32 entries, 1-bit values: Up to 216 times slower

– 16 entries, 1→2-bit values: Up to 216 times slower

• SetSep solutions to achieve linear construction time
– Two-level hashing to divide entries into small, evenly-sized sets

– Separate hash functions to encode individual value bits

See our SIGCOMM 2015 paper for more details
• Trading space for faster construction by using sparser value array
• Fast generation of many hash functions
• Fast batched lookups with memory prefetching

Main Properties of SetSep

• Compact size

– 0.5+1.5 log2(node count) bits/entry

– E.g., 3.5 bits/entry for 4 nodes

• Reasonably fast construction
– 0.24 million entries/sec (1 thread)

• Fast lookup
– 520 million lookups/sec (16 threads)

Evaluation Overview

• Full-system forwarding performance

• Scalability analysis

• Setup
– Modified Connectem’s LTE Evolved Packet Core stack

• Using Intel DPDK

– Traffic generated by Spirent SPT-N11U Ethernet testing platform

– 4x commodity server nodes

• 2x Intel Xeon E5-2697 v2 (30 MiB L3 cache)

• 2x Intel 82599ES (dual-port 10 GbE NIC)

– 10 GbE hardware switch as cluster interconnect

End-to-End Latency with 4 Nodes

GPT avoids indirection
→ Low latency

Why is ScaleBricks also
faster than full duplication?
(both avoid indirection)

Per-Node Throughput

ScaleBricks’s partial FIB is smaller than full FIB
→ More FIB entries fit in CPU L3 cache
→ Higher throughput & lower latency

ScaleBricks begins to
slow with larger FIB than
full duplication does

ScaleBricks exhibits
graceful tput decrease

Scalability Analysis

Aggregate FIB size when each node uses 16 MiB of memory

ScaleBricks offers
FIB scaling
through 4-32 nodes

Hash partitioning shows
very good FIB scaling
(at the cost of
latency & throughput)

Full duplication provides
no FIB scaling

Conclusion

• ScaleBricks: Scalable cluster architecture for middleboxes
– Global Partition Table + Partial FIB: FIB scaling without indirection

– 23% higher tput, 34% lower latency, FIB scaling through 4-32 nodes

• SetSep: Compact key-value mapping for small value space
– Skip storing keys, brute force to avoid value collisions

– Small memory overhead, fast lookup, good construction speed

• Applications
– Clustered network appliances with flow pinning

– We are looking for other cool applications of ScaleBricks and SetSep!

