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My background
■ High-performance systems for computer graphics 

- Real-time rendering algorithms  
- Parallel programming systems for supercomputing and 

heterogeneous machines: CPUs+GPUs 
- Optimizing compilers for high-level graphics languages 
- GPU hardware architecture 

■ Growing area of personal focus: “internet-scale” image 
processing and analytics



Our community
■ “Game developer” mentality is pervasive in this community:  

pack flops into system via heterogeneity/specialization + 
use every flop you can get 

■ Definition of high performance = application realizes significant 
fraction of peak arithmetic capability of instruction pipelines 
- e.g., latency stalls of concern are due to branch mispredicts, 

jumps due to virtual function calls, or waiting on DRAM or 
the LLC (as opposed to disk/SSD I/O latency) 



Modern GPU?
■ A many-core, interleaved multi-

threaded processor, featuring wide 
SIMD instruction support 

■ With some fixed-function logic for 
domain-specific data compression and 
a few common graphics primitives
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■ NVIDIA GTX 680: (2012) 
- 8 “core” chip 
- 64-way multi-threading per core 
- Threads issue 32-wide SIMD instr. 



Integrated Gen 9 GPU (2015)
■ Sits on ring bus on Core i7 architecture 
■ Shares physical memory and LLC with Intel CPU 
■ GPU caches are coherent with CPU caches

■ Intel HD 530 graphics 
- 24 “cores” @ 1.15GHz 
- 7 threads per core, 8 or 16-wide SIMD instructions 
- Note: near-future SKUs will approach 1 TFLOP



Web-scale visual computing today
Ingesting/serving 
the world’s photos

Streaming video Deep learning on 
large-scale image 

collections

2B photo uploads and 
shares per day [FB2015] 
across Facebook sites 

(includes Instagram
+WhatsApp)

Youtube 2015: 300 hours 
uploaded per minute [Youtube] 

Cisco VNI projection: 
80-90% of 2019 internet 

traffic will be video. 
(64% in 2014) 

Distributed optimization: 
DistBelief 
HogWild  

Parameter Server 
Project Adam 

Visualizing and Understanding Convolutional Networks
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Figure 3. Architecture of our 8 layer convnet model. A 224 by 224 crop of an image (with 3 color planes) is presented as
the input. This is convolved with 96 di↵erent 1st layer filters (red), each of size 7 by 7, using a stride of 2 in both x and y.
The resulting feature maps are then: (i) passed through a rectified linear function (not shown), (ii) pooled (max within
3x3 regions, using stride 2) and (iii) contrast normalized across feature maps to give 96 di↵erent 55 by 55 element feature
maps. Similar operations are repeated in layers 2,3,4,5. The last two layers are fully connected, taking features from
the top convolutional layer as input in vector form (6 · 6 · 256 = 9216 dimensions). The final layer is a C-way softmax
function, C being the number of classes. All filters and feature maps are square in shape.

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Figure 4. Evolution of a randomly chosen subset of model features through training. Each layer’s features are displayed
in a di↵erent block. Within each block, we show a randomly chosen subset of features at epochs [1,2,5,10,20,30,40,64].
The visualization shows the strongest activation (across all training examples) for a given feature map, projected down to
pixel space using our deconvnet approach. Color contrast is artificially enhanced and the figure is best viewed in electronic
form.
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Figure 5. Analysis of vertical translation, scale, and rotation invariance within the model (rows a-c respectively). Col 1: 5
example images undergoing the transformations. Col 2 & 3: Euclidean distance between feature vectors from the original
and transformed images in layers 1 and 7 respectively. Col 4: the probability of the true label for each image, as the
image is transformed.



Ingesting/serving 
the world’s photos

2B photo uploads and 
shares per day [FB2015] 
across Facebook sites 

(includes Instagram
+WhatsApp)

Facebook transcodes images (resizes, 
recompresses) on the fly as they are served 
to precisely meet screen size / bandwidth / 
latency requirements of the user.  
[Cabral15] 

It would be attractive to more aggressively 
use throughput-maximized processor 
architectures for these tasks

Scale to more users / more photos by 
improving efficiency



Ingesting/serving 
the world’s photos

2B photo uploads and 
shares per day [FB2015] 
across Facebook sites 

(includes Instagram
+WhatsApp)

Scale functionality: perform more sophisticated 
processing to make photos better

Photos

Photo “fix up” [Hayes, Efros]

My bad photo Part to fix

Similar photos others 
have taken

Fixed!



New opportunities



Virtual reality

Latency is king: Allowed at most 20-25ms between motion of head to emission of photons from display 
that reflect this head movement



VR: exceptionally high pixel counts

Eyes designed by SuperAtic LABS from the thenounproject.com

iPhone 6: 4.7 in “retina” display: 
1.3 MPixel 

326 ppi → 57 ppd

~5o

180o

Future “retina” VR display: 
57 ppd covering 180o 

= 10K x 10K display per eye 
=  200 MPixel

Example: Foveated rendering 
(adaptive resolution based on 
tracked eye position)



Example: Google’s JumpVR video 
Input stream: 16 4K GoPro cameras
Register/3D align video stream (on edge device) 
Broadcast encoded video stream across 
the country to 50M viewers



3D reconstruction



3D reconstruction from RGB or 
RGBD images and video feeds

1. For each image, find interest points  (map) 
2. Correspondence: for each interest point in image A, find instances 

of similar points in other images (sparse all-to-all) 
3. Iterative global optimization for 3D positions of cameras and 

interest points based on correspondences (iterative graph)

Keypoint-based approaches: [Snavely 06] Visual odometry based approaches [LSD-SLAM 2014]



3D reconstruction (for localization)

■ AR requires detailed 3D map of surroundings: 
- To localize head motion of human (AR has no luxury of staying in one 

place like VR — must localize “inside out” using what headset sees) 
- Must know geometry to know how to render “on top” of real world 
- Efforts to build cm-scale “3D map” of real world, used by AR apps

Augmented reality 
(localizing the head)

[Microsoft Hololens]



3D reconstruction (for localization)

Flying drones on precise, 
repeatable paths

Autonomous vehicles

Huge commercial interest in 
drone photography (e.g. 
construction site inspection)

[Autodesk Octocopter]



Cloud-based gaming



Cloud-based gaming
■ Industry settling on streaming compressed pixels to thin client. 

(not factoring computation between client and server) 
■ Low-latency requirement suggests need for GPU capability in future 

CDN architectures (to execute game + generate video streams)

Thin client (Android device) Virtualized GPUs in datacenter (or home)

H.264-compressed 
HD video stream

■ Example: NVIDIA Tesla GRID GPU: 
■ Maximum 8-to-1 user to GPU ratio  
■ Reduce latency + offload compression from CPU: GPU HW H.264 encoder 

directly encodes frame buffer into H.264 bitstream, then GPU DMAs bit stream 
to host DRAM for NIC

user input



“Always-on” video stream analysis
Glass

Narrative

Facebook “Live”

MyLifeBits

Vehicles

Surveillance

Webcams

Astronomy/Science
Traffic



“Always-on” video stream analysis
■ Example: GE Streetlight deployment 

- HD video cameras street light fixtures 
- Fiber runs from pole back to GE Predix 

datacenter in San Ramone.

Empty parking spot detection algorithm 
[Cisco]

■ Platform Pittsburgh 
- Trying to build visual data ingest pipeline 

from 50 traffic cameras in Pittsburgh to a 
common, open data analysis platform at 
CMU. 

- Definitely an edge + cloud problem

SurTrac distributed traffic light control 
(9-intersection test in Pittsburgh)



Large-scale visual data analytics
■ There is no doubt big-data analytics is central to many 

organizations today. 
■ There is comparatively little analysis done on the world’s 

growing repository of visual information  (“dark matter” 
of the internet) [Perona]



Enter Krishna…

GoProGlass



Figure 1: Over nine months we acquired a 70-hour egocentric video dataset capturing the daily outdoor activities of a
computer vision graduate student. The dataset spans a wide variety of environments and life experiences including daily
walks to campus, navigation through busy urban sidewalks and city parks, and socializing and having meals with friends.

single individual’s daily life experiences are only so broad.
For example, we observe (and can predict), that like most
humans, the student generally stops at intersections and
walks straight inside sidewalks, but we can be surprised by a
harmless jaywalk. While we record many predictable morn-
ings of taking the same path to campus, we also record trips
to parks and lunches with friends.

We explore the task of predicting egocentric camera
movement not only because navigation in the world is fun-
damental, but also because it is a task that is well-suited for
massive-scale video streams. With new data, perhaps in-
volving new life situations, arriving daily, it is intractable to
involve humans in the labeling of data or in the validation
of predictor performance. Motion is information that can
be reliably estimated from auxiliary sensors, affording the
ability to use a large corpus of examples to make (and then
automatically validate) new predictions.

2. Prior Work

Although early explorations of egocentric image capture
such as the MyLifeBits [8] system from Microsoft Research
and the U.K.’s “Memories for Life” grand challenge initia-
tive [1] were longitudinal studies of data from a single in-
dividual, nearly all recent egocentric datasets [20, 16] have
been collected by multiple individuals for very short dura-
tions and span. Aghazadeh et al. [2] collected data from a
single individual for an entire month, but recorded for a only

few minutes daily and along the same walking route each
day. Nebojsa et al. [11] collected data for 19 days across
different locations, but at a rate of only one image every
20 seconds. Our dataset has been collected at high frame
rate for several months and in a diverse set of environments.

As it has become easier to acquire egocentric video en
masse, the uniqueness of egocentric content, and the dif-
ficulty of its analysis, has made it an increasingly popular
target of recent study. Researchers have explored activity
recognition [5, 6, 13, 20], object recognition [21, 7], sum-
marization [16, 18, 11], and pose estimation [22] on ego-
centric videos. Several efforts, like our own, have sought
to exploit the redundant (aka “boring”) nature of egocentric
video streams. Aghazadeh et al. [2] leverage redundancy in
videos to identify novel events. Lee et al. [16] attempted
to remove the “boring” parts of egocentric videos by pre-
dicting important objects and events. Given that egocentric
video cameras are fundamentally mobile devices, we view
camera movement prediction as a challenging new task for
researchers in the area to consider.

Our work takes a purely data-driven approach to the task
of temporal prediction. Similar to prior methods [17, 27]
we make no assumptions about the visual environment, re-
quire no semantic labeling of the scene, and leverage sim-
ple nearest-neighbor search of large visual databases to find
examples that are likely to predict future behavior. While
[17, 27] also sought to transfer object motion across dif-

KrishnaCam dataset: 

Recording by single 
individual: 
Sep 2014 – May 2015 

Duration: ~ 70 hrs 
(5-30 minute clips of 
outdoor activities) 

High dataset diversity: 
urban, residential, campus, 
parks, day/night, seasonal 
change, interaction with 
friends   

Data: 
720p, 30 fps video 
+ accelerometer, 
gyroscope, orientation, 
GPS on body (not camera) 



Geographic location



How boring is the life of a grad student?  
How much new visual data is seen as recording continues for months?

Similarity = cos distance of MIT Places layer 5 responses (full scene) 
“Novel frames” = average distance to top-5 nearest neighbors greater than threshold 



Where does Krishna see people?

17% of frames contain 
at least one person 
(11% have exactly 1)

Highlighted areas: at least 4 people in frame on average 
(crowded areas around campus)



How does the world evolve?
1. Change in companion

2. Change in object 
location (bike rack 
moved for 
construction)

3. Change in transient 
object 
(different parked cars)

4. Change in season

5. Change in time of 
day (lighting conditions)



Predicting where Krishna will move next
Ground Truth Predicted Top 10 Nearest Neighbors from prior recording



Cross-Cutting Technologies



Portable, productive programming 
frameworks for high-performance 
image processing
■ Halide language has been a big success: 

- Used to implement Google Photos Autoenhance, HDR+ app
[Ragan-Kelley 2012]

Algorithm is a series of functions (think: pipeline stages) 
Side-effect-free functions map coordinates to image values 
(in, tmp and blurred are functions)

Schedule describes how to map functional 
specification to a parallel machine

■ Halide = two domain-specific co-languages 
1. A purely functional DSL for defining image processing algorithms 
2. A DSL for defining “schedules” for how to map these algorithms to machines



Visual computing database: 
What are the right representations for 
efficiently querying and analyzing large 
image/video collections?

■ select (all frames on Youtube 
ten seconds BEFORE 
a frame containing a child crying)   
{  then run myClassifierTrainingFunction()  } 

■ bikes = select (all frames on Uber dashboard cams in Dec 2014 AND biker falling in the picture) 
cars = select (all frames on Uber dashboard cams in Dec 2014 AND car in the picture) 
select frames where bbox(bikes) is WITHIN 100 pixels of bbox(cars) ) { … } 

■ select (all frames in my_image_database containing a person in a specified pixel region) 
{ then scale and align all images according to bbox(person) and compute average }

1. We are exploring scheduling of relational, spatial, temporal queries that involve 
significant, heavyweight pixel manipulation 

2. Result sets are subsequently used in super-computing scale processing: 
e.g., 3D reconstruction, alignment, optimization/training



Writing applications that share common 
sensing infrastructure at the edge

■ Edge + cloud application may share edge sensing resources with 
other applications (in addition to sharing traditional cloud 
computing/storage resources) 

■ Think: how would a city virtualize its smart sensing infrastructure 
so third-parties could write applications that extract value from it? 

- Little work in “smart camera” platforms in this direction



Managing accelerated-
computing in the datacenter
■ To meet efficiency goals, datacenter-scale visual computing 

applications will seek to leverage throughput architectures: GPUs or 
other accelerators 
- Evaluate sufficiency of current GPU architectural support for 

virtualization? (reducing cost of context switch) 

■ What fixed-function logic should be added to server CPUs 
- e.g., tight integration between HW video compressor and NIC 

■ Current debate in graphics community: is there sufficient motivation 
for including a programmable image processor (ISP) in a modern 
system? (node = CPU+GPU+image processor)



Visual data compression
■ For distributing high-resolution streams (e.g., 

VR video) to an array of edge devices 

■ To enable flexibility to retarget dynamically 
specific output devices 

■ For intelligently ingesting data from always-on 
sources  
- Edge computation serves as an intelligent 

filter/compressor (need to establish richer 
notions of visual data importance) 

■ Difference from traditional image/video 
compression: most data will be consumed by 
computers, not humans

Example: 
considering foveation

Example: exploiting redundancy 
over long time scales



Algorithms for indexing visual data
■ Retrieval and correspondence are search problems 

that are at the heart of many applications 
- Find this pattern in the same image 
- Find this pattern somewhere in any image the database  

■ Indexing visual data remains an open problem 

■ Sometimes the best way to search/analyze 
efficiently is to throw out most data (subsampling, 
aggregation, compression)



Computing on big visual data, 
while preserving privacy

■ Visual information may lend itself to new forms 
of anonymization techniques 

■ Technologies for maintaining data provence / 
limiting data lifetime may become critical 
- Cameras everywhere may be more palatable if the data is not 

stored for long



Summary



This is going to be fun
■ Next generation of visual computing workloads  

- 3D graphics community has long history of embracing domain-specific 
languages and specialized throughput architectures to achieve 
exceptionally efficient solutions (”Use every cycle we can get”) 

- This community is excitedly tackling emerging problems in image and 
video analysis and 3D reasoning (“gosh, there’s really high-impact 
new problems and low hanging fruit in systems-design here”) 

■ Problems are moving into internet-scale regimes 
where we could learn a lot from the distributed 
system community.



Thank you
kayvonf@cs.cmu.edu


