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The GraphLab journey 

Low et al. [UAI 2010] 

• Distributed system for  
graph computation 

• Challenges scaling to  
huge graphs 

Triangle Counting on  
Twitter Graph 
40M Users   
1.2B Edges 
Total: 34.8 billion 
triangles 

64 Machines, 1024 Cores 
1.5 Minutes 

GraphLab2

GraphChi

Hadoop
1636 Machines, 423 Minutes 

59 Minutes, 1 Mac Mini! 

Gonzalez et al. [OSDI 2012] 

• New graph computation model 
• Highly scalable to huge natural 

graphs 

GraphChi 
Kyrola et al. [OSDI 2012] 

• Designed for best single 
machine scaling 

• Optimized out-of-core 
computation 
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Many systems 

• Assume unbounded resources 
• Optimize for scale 

• Limited scalability on  
single machine / small cluster 

• Really painful to build 
intelligent applications… 



SFrame:  Scalable data frame for ML 



Data frames  
user movie rating 

When you choose a  
data frame,  

have your application in mind 

SFrame is  
optimized for ML 

ML has specific  
data access patterns,  

we make them fast, really fast 
(Columnar transformations,  

creating new features, iterations,…) 



Data is usually rows…  

user movie rating 

But, data engineering typically column 
transformations… 
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Feature engineering is columnar 

 
Normalizes the feature x: 
sf[‘rating’] = sf[‘rating’] / sf[‘rating’].sum() 
 
Create a new feature: 
sf[‘rating-squared’] =  
 sf[‘rating’].apply(lambda rating: rating*rating) 
 
Create a new dataset with 2 of the features: 
sf2 = sf[[‘rating’,’ rating-squared’]]  
 

rating user movie 
rating 

squared 

Sequential operations happen over one or a few columns, not rows of data 
                (certain algorithms, e.g., SGD, 
operate or rows,  
                won’t cover today, but can be 
addressed in framework) 

        



Opportunity for Out-of-Core ML 

Capacity 1 TB 

0.5 GB/s 

10 TB 

0.1 GB/s 

0.1 TB 

1 GB/s Throughput 

Fast, but significantly  
limits data size Opportunity for big data on 1 machine  

For sequential reads only! 
Random access very slow   

Out-of-core ML 
opportunity is huge 

Usual design → Lots 
of random access → 

Slow 

Design to maximize 
sequential access for  

ML algo patterns 

GraphChi early example 

SFrame data frame for ML 



…
  

Same 
code 

user movie rating 

SFrame: Scalable data frame optimized for ML  
Never run out of memory 
Sharded, compressed, out-of-core, columnar  
Arbitrary lambda transformations, joins,… from Python 

Large data on one machine? 
 Limited RAM  Must use disk 
     (out-of-core computation) 
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SFrame columnar encoding 
user movie rating Type aware compression: 

• Variable Bit length Encode 
• Frame Of Reference Encode 
• ZigZag Encode 
• Delta / Delta ZigZag Encode 
• Dictionary Encode 
• General Purpose LZ4 

 

Netflix Dataset,  
99M rows, 3 columns, ints 
1.4GB raw 
289MB gzip compressed 

User            176 MB 14.2 bits/int 

SFrame File 

0.02 bits/int Movie            257 KB 
3.8 bits/int Rating       47 MB 

------------------------------- 
Total                223MB 

10s 



Demo: 10TBs of data on one machine! 



SFrame ❤️ all ML  
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scikit-learn is awesome, but... 
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Millions of Rows Airline Delay Dataset, 
SGDLinearClassifier 

scikit-learn 
+ 

Numpy 

Out of RAM 
Numpy in memory only 



Demo: 10TBs of data on one machine redux 
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Numpy Automatically Backed by Sframes →  
Scale many Python packages (scikit-learn, scipy,…) 

 import graphlab.numpy  
 Scalable numpy activation successful  
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Millions of Rows 
Airline Delay Dataset, 
SGDLinearClassifier 

Out of RAM 
SFrame 

 +  
scikit-learn 

+ 
Numpy 

scikit-learn 
+ 

Numpy 

Caveats apply 
 - Scales most memory-bound sklearn algorithms 
 - Sequential access highly preferred for performance 



ML is not just about tables 
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Social Media 

• Graphs encode the relationships between: 
 
 
 
 

• Big: trillions of vertices and edges and rich metadata 
- Facebook (10/2012): 1B users, 144B friendships  
- Twitter (2011): 15B follower edges 

Advertising Science Web 

People 
Facts 

Products 
Interests 

Ideas 



For example…  
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Example:  Estimating political bias 
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But, ML is about all data types…  
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ML pipelines combine multiple data types 

Raw  
Wikipedia  

< / > < / > < / > 
XML 

Hyperlinks PageRank Top 20 Pages 

Title PR 
Text 

Table 

Title Body 
Topic Model 

(LDA) Word Topics 

Word Topic 

Term-Doc 
Graph 



Integrating tables and graphs  
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SGraph 

Graph processing 
& analytics 

Out-of-core & 
scalable 

Neighborhoods, paths, graph 
algos, community detection, 

label propagation, ML on 
graphs, viz, … 

Backed by 
SFrame 
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Basic graph representation  

Vertex Table 
__id Address ZipCode 

Alice … 98105 
Bob … 98102 
Charlie … 98103 

Edge Table 
__src_id __dst_id Messag

e 
Alice Bob “hello” 
Bob Charlie “world” 
Charlie Alice “moof” 

Charlie Bob 

Alice 
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SGraph vertex data layout 

1 

2 

3 

4 

Vertex SFrames 

__id Name Address ZipCode 
1011 John … 98105 
2131 Jack … 98102 

Example: vertices partitioned into p = 4 SFrames 
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SGraph edge data layout 

1 

2 

3 

4 

Vertex SFrames 

(1,2) 

(2,2) 

(3,2) 

(4,2) 

(1,1) 

(2,1) 

(3,1) 

(4,1) 

(1,4) 

(2,4) 

(3,4) 

(4,4) 

(1,3) 

(2,3) 

(3,3) 

(4,3) 

Edge SFrames 

Edges partitioned into p^2 = 16 SFrames 

src_id dst_id NumLikes NumMsgs 
2011 4131 2 17 
2023 4234 23 3 
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Deep integration of SFrames and SGraphs 
• Seamless interaction between graph data and table data 

SGraph vertex data can be viewed as tables 
 

g = SGraph(…) 
g.vertices[‘large_pagerank’] = g.vertices[‘pagerank’]>100 

SGraph edge data can be viewed as tables 
 

g = SGraph(…) 
g.edges[‘normalized_ratings’] = g.edges[‘ratings’]/g.edges[‘ratings’].mean() 
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SGraph columnar  Selection is easy  
Vertex SFrames Edge SFrames 
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Vertex SFrames Edge SFrames 

SGraph columnar  Adding features is easy  



Performing computations on graphs 
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Distributed connected components algorithm 

• Initialize: Assign vertex id as 
component  

• Iterate:  
- My id is the minimum of my 

neighborhood  
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Properties of graph-parallel algorithms 
Dependency 

Graph 
Iterative 

Computation 

My Rank 

Friends Rank 

Local 
Updates 

Graphical Models 
Gibbs Sampling 

Belief Propagation 
Variational Inf. 

Semi-Supervised  
Learning 

Label Propagation 
CoEM 

Data-Mining 
PageRank 

Triangle Counting 

Collaborative  
Filtering 

Item-item similarity 
Tensor Factorization 



Graph-parallel programming abstractions 



Vertex programs [Low et al. ‘10] 

connected_components(vertex, neighbors){ 
 
  // Compute minimum component 
  min_component = min(vertex[‘component’],    
        components of 
neighbors) 
 

   // Update vertex component 
  vertex[‘component’] = min_component  
 
} 

User-defined program: applied to  
vertex transforms data in scope of vertex 

Vertex programs simple, but exhibit  
significant performance challenges  
in out-of-core & distributed settings 
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Triple_apply:  
simple, highly-parallelizable graph processing abstraction  

connected_comp_triple_apply(src, dst, edge){ 
 
  // Compute minimum component 
  min_component = min(src[‘component’],   
        
 dst[‘component’]) 

   // Update both vertices 
 src[‘component’] = min_component 
 dst[‘component’] = min_component 
 
} 

Edge programs not vertex programs! 
Distributed implementation is much simpler & 

more efficient than vertex programs 



Optimizing triple_apply execution 
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Triple_apply needs vertex data for src and dst vertices 

1 

2 

3 

4 

Vertex SFrames 

(1,2) 

(2,2) 

(3,2) 

(4,2) 

(1,1) 

(2,1) 

(3,1) 

(4,1) 

(1,4) 

(2,4) 

(3,4) 

(4,4) 

(1,3) 

(2,3) 

(3,3) 

(4,3) 

Edge SFrames 
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Naïve traversal over edges 

1 

2 

3 

4 

Vertex SFrames 

(1,2) 

(2,2) 

(3,2) 

(4,2) 

(1,1) 

(2,1) 

(3,1) 

(4,1) 

(1,4) 

(2,4) 

(3,4) 

(4,4) 

(1,3) 

(2,3) 

(3,3) 

(4,3) 

Edge SFrames 

Significant IO cost 
No cache locality 
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Need walk ordering minimizing loading-unloading 

• Efficient option: Hilbert space-filling curves 
- Minimum loads of vertex data 
- Preserves locality  great cache behavior 



SGraph: performance 



Performance of SGraph 
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70 sec 

251 sec 

200 sec 

2,128 sec 

0 750 1500 2250

GraphLab Create

GraphX

Giraph

Spark

Connected components in Twitter graph 

Source(s): Gonzalez et. al. (OSDI 2014) 
Twitter: 41 million Nodes, 1.4 billion Edges 
 

                SGraph 

16 machines 

1 machine 

https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf
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Pagerank on Common Crawl Graph 
3.5 billion Nodes and 128 billion Edges 
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16 CPUs, 1 SSD 



SFrame/SGraph Summary 
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SFrame & SGraph 

Optimized  
out-of-core computation for 

ML 

High Performance 
1 machine can handle: 

TBs of data 
100s Billions of edges 

 

 Optimized for ML 
 . Columnar transformation  
 . Create features 
 . Iterators 
 . Filter, join, group-by, aggregate 
 . User-defined functions  
 . Easily extended through SDK 

Tables, graphs, 
text, images 

Open-source 
❤️ 

BSD  
license 

More than  
10,000 downloads 



A tech-transfer update…  
(Not ISTC IP)  



The ML pipeline circa 2013 

Data 
ML 

Algorithm 

My curve is 
better than 
your curve 

Write a 
paper 
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Retail 

Movie Distribution 

Music 

Advertising 

Networking 

Search 

Taxis 

Dating 

Legal Advice 
Human Resources 

Coupons 

Campaigning 

Real Estate 

Wearables 

CRM 

Disruptive companies 
differentiated by 

INTELLIGENT 
APPLICATIONS 

using 

Machine Learning 
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Promise will only come to be if we  

change how ML is done 

 
In 5 years, every successful app will be intelligent 

Developers Today:  need data scientists,  
who write production code & 

know about deployment 
Very rare: thus huge investments & teams  
@Google, Facebook, Microsoft, Amazon 
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Dato’s mission is to  
accelerate the creation of  

intelligent applications 
 
  
  
 

   
 

   
   
  
 

by making  
sophisticated machine learning  

 

   
  

   
   
  
 
   
   
 

as easy as  
“Hello world!” 



Demo of an intelligent application made easy 
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Since last year… 

Dato 
customers… 



Sophisticated machine learning made easy 
 Create Intelligence Accelerants   

High-level  
ML toolkits 

AutoML 
 

tune params, model selection,… 
  

so you can focus on  
creative parts 

Reusable 
features 

 

transferrable feature engineering  
  

accuracy with less data &  
less effort 
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High-level ML toolkits  
get started with 4 lines of code,  
then modify, blend, add yours…  

Recommender Image  
search 

Sentiment 
analysis 

Data  
matching 

Auto  
tagging 

Churn 
predictor 

Object 
detector 

Product 
sentiment 

Click  
prediction 

Fraud 
detection 

User 
segmentation 

Data 
completion 

Anomaly 
detection 

Document 
clustering Forecasting  Search  

ranking Summarization … 

import graphlab as gl  
data = gl.SFrame.read_csv('my_data.csv')  
model = gl.recommender.create(data,    
      user_id='user',  
       item_id='movie’, 
       target='rating')  
recommendations = model.recommend(k=5) 



55 

GraphLab Create includes  
easy to use, deep learning on multi-GPUs 

Deep learning tutorial tomorrow, 4pm! 

graphlab.deeplearning.create(data,target=label')  

Deep learning in  
1 line of code  

You can also open 
the box and add 
your own layers 

Average Pooling Layer Rectified Linear Layer 

Convolution Layer Sigmoid Layer 

Dropout Layer SoftMax Layer 

Flatten Layer SoftPlus Layer 

Full Connection Layer Sum Pooling Layer 

Max Pooling Layer Tanh Layer 
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Hours 

Digit recognition benchmark 

H2O.ai:  
10 machines/80 cores 

GraphLab Create  
4 min on 4 GPUs 



Distributed machine 
learning 

Your big data 
infrastructure  

(cloud, hadoop, spark,..) 

Sophisticated machine learning made distributed 
            Create Intelligence on Huge Data 
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Pagerank on Common Crawl Graph 
3.5 billion Nodes and 128 billion Edges 
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45 secs/iteration 
3B edges/sec 
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Criteo Terabyte Click Prediction 

4.4 Billion Rows 
13 Features 

½ TB of data 
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Same code, distributed ML 

import graphlab as gl 
data = gl.SFrame.read_csv(’s3://…')  
model = gl.classifier.create(data,  
               target=’click’) 

S
in

gl
e 

m
ac

hi
ne

  
M

L 
co

de
 

c = gl.deploy.ec2_cluster.load(’s3://…') 

gl.set_distributed_execution_environment(c) 

c = gl.deploy.hadoop_cluster.load(’hdfs://…') c = gl.deploy.spark_cluster.load(’hdfs://…') 
 



SFrame/Sgraph summary 
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SFrame & SGraph 

Optimized  
out-of-core computation for 

ML 

High Performance 
1 machine can handle: 

TBs of data 
100s Billions of edges 

 

 Optimized for ML 
 . Columnar transformation  
 . Create features 
 . Iterators 
 . Filter, join, group-by, aggregate 
 . User-defined functions  
 . Easily extended through SDK 

Tables, graphs, 
text, images 

Open-source 
❤️ 

BSD  
license 

More than  
10,000 downloads 
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