
http://www.istc-cc.cmu.edu/

Scalable Data Structures for
Machine Learning

Carlos Guestrin
University of Washington

Dato, Inc.

2

The GraphLab journey

Low et al. [UAI 2010]

• Distributed system for
graph computation

• Challenges scaling to
huge graphs

Triangle Counting on
Twitter Graph
40M Users
1.2B Edges
Total: 34.8 billion
triangles

64 Machines, 1024 Cores
1.5 Minutes

GraphLab2

GraphChi

Hadoop
1636 Machines, 423 Minutes

59 Minutes, 1 Mac Mini!

Gonzalez et al. [OSDI 2012]

• New graph computation model
• Highly scalable to huge natural

graphs

GraphChi
Kyrola et al. [OSDI 2012]

• Designed for best single
machine scaling

• Optimized out-of-core
computation

3

Many systems

• Assume unbounded resources
• Optimize for scale

• Limited scalability on
single machine / small cluster

• Really painful to build
intelligent applications…

SFrame: Scalable data frame for ML

Data frames
user movie rating

When you choose a
data frame,

have your application in mind

SFrame is
optimized for ML

ML has specific
data access patterns,

we make them fast, really fast
(Columnar transformations,

creating new features, iterations,…)

Data is usually rows…

user movie rating

But, data engineering typically column
transformations…

7

Feature engineering is columnar

Normalizes the feature x:
sf[‘rating’] = sf[‘rating’] / sf[‘rating’].sum()

Create a new feature:
sf[‘rating-squared’] =
 sf[‘rating’].apply(lambda rating: rating*rating)

Create a new dataset with 2 of the features:
sf2 = sf[[‘rating’,’ rating-squared’]]

rating user movie
rating

squared

Sequential operations happen over one or a few columns, not rows of data
 (certain algorithms, e.g., SGD,
operate or rows,
 won’t cover today, but can be
addressed in framework)

Opportunity for Out-of-Core ML

Capacity 1 TB

0.5 GB/s

10 TB

0.1 GB/s

0.1 TB

1 GB/s Throughput

Fast, but significantly
limits data size Opportunity for big data on 1 machine

For sequential reads only!
Random access very slow

Out-of-core ML
opportunity is huge

Usual design → Lots
of random access →

Slow

Design to maximize
sequential access for

ML algo patterns

GraphChi early example

SFrame data frame for ML

…

Same
code

user movie rating

SFrame: Scalable data frame optimized for ML
Never run out of memory
Sharded, compressed, out-of-core, columnar
Arbitrary lambda transformations, joins,… from Python

Large data on one machine?
 Limited RAM  Must use disk
 (out-of-core computation)

10

SFrame columnar encoding
user movie rating Type aware compression:

• Variable Bit length Encode
• Frame Of Reference Encode
• ZigZag Encode
• Delta / Delta ZigZag Encode
• Dictionary Encode
• General Purpose LZ4

Netflix Dataset,
99M rows, 3 columns, ints
1.4GB raw
289MB gzip compressed

User  176 MB 14.2 bits/int

SFrame File

0.02 bits/int Movie  257 KB
3.8 bits/int Rating  47 MB

Total  223MB

10s

Demo: 10TBs of data on one machine!

SFrame ❤️ all ML

13

scikit-learn is awesome, but...

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

R
un

tim
e

(s
)

Millions of Rows Airline Delay Dataset,
SGDLinearClassifier

scikit-learn
+

Numpy

Out of RAM
Numpy in memory only

Demo: 10TBs of data on one machine redux

15

Numpy Automatically Backed by Sframes →
Scale many Python packages (scikit-learn, scipy,…)

 import graphlab.numpy
 Scalable numpy activation successful

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400

R
un

tim
e

(s
)

Millions of Rows
Airline Delay Dataset,
SGDLinearClassifier

Out of RAM
SFrame

 +
scikit-learn

+
Numpy

scikit-learn
+

Numpy

Caveats apply
 - Scales most memory-bound sklearn algorithms
 - Sequential access highly preferred for performance

ML is not just about tables

17

Social Media

• Graphs encode the relationships between:

• Big: trillions of vertices and edges and rich metadata
- Facebook (10/2012): 1B users, 144B friendships
- Twitter (2011): 15B follower edges

Advertising Science Web

People
Facts

Products
Interests

Ideas

For example…

19

Example: Estimating political bias

Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
? ?

? ?
?

?

?

?
?

? ?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

But, ML is about all data types…

21

ML pipelines combine multiple data types

Raw
Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Pages

Title PR
Text

Table

Title Body
Topic Model

(LDA) Word Topics

Word Topic

Term-Doc
Graph

Integrating tables and graphs

23

SGraph

Graph processing
& analytics

Out-of-core &
scalable

Neighborhoods, paths, graph
algos, community detection,

label propagation, ML on
graphs, viz, …

Backed by
SFrame

24

Basic graph representation

Vertex Table
__id Address ZipCode

Alice … 98105
Bob … 98102
Charlie … 98103

Edge Table
__src_id __dst_id Messag

e
Alice Bob “hello”
Bob Charlie “world”
Charlie Alice “moof”

Charlie Bob

Alice

25

SGraph vertex data layout

1

2

3

4

Vertex SFrames

__id Name Address ZipCode
1011 John … 98105
2131 Jack … 98102

Example: vertices partitioned into p = 4 SFrames

26

SGraph edge data layout

1

2

3

4

Vertex SFrames

(1,2)

(2,2)

(3,2)

(4,2)

(1,1)

(2,1)

(3,1)

(4,1)

(1,4)

(2,4)

(3,4)

(4,4)

(1,3)

(2,3)

(3,3)

(4,3)

Edge SFrames

Edges partitioned into p^2 = 16 SFrames

src_id dst_id NumLikes NumMsgs
2011 4131 2 17
2023 4234 23 3

27

Deep integration of SFrames and SGraphs
• Seamless interaction between graph data and table data

SGraph vertex data can be viewed as tables

g = SGraph(…)
g.vertices[‘large_pagerank’] = g.vertices[‘pagerank’]>100

SGraph edge data can be viewed as tables

g = SGraph(…)
g.edges[‘normalized_ratings’] = g.edges[‘ratings’]/g.edges[‘ratings’].mean()

28

SGraph columnar  Selection is easy
Vertex SFrames Edge SFrames

29

Vertex SFrames Edge SFrames

SGraph columnar  Adding features is easy

Performing computations on graphs

31

Distributed connected components algorithm

• Initialize: Assign vertex id as
component

• Iterate:
- My id is the minimum of my

neighborhood

7

1 4

3

2

5 6

3
1

1

1

2 2

Properties of graph-parallel algorithms
Dependency

Graph
Iterative

Computation

My Rank

Friends Rank

Local
Updates

Graphical Models
Gibbs Sampling

Belief Propagation
Variational Inf.

Semi-Supervised
Learning

Label Propagation
CoEM

Data-Mining
PageRank

Triangle Counting

Collaborative
Filtering

Item-item similarity
Tensor Factorization

Graph-parallel programming abstractions

Vertex programs [Low et al. ‘10]

connected_components(vertex, neighbors){

 // Compute minimum component
 min_component = min(vertex[‘component’],
 components of
neighbors)

 // Update vertex component
 vertex[‘component’] = min_component

}

User-defined program: applied to
vertex transforms data in scope of vertex

Vertex programs simple, but exhibit
significant performance challenges
in out-of-core & distributed settings

35

Triple_apply:
simple, highly-parallelizable graph processing abstraction

connected_comp_triple_apply(src, dst, edge){

 // Compute minimum component
 min_component = min(src[‘component’],

 dst[‘component’])

 // Update both vertices
 src[‘component’] = min_component
 dst[‘component’] = min_component

}

Edge programs not vertex programs!
Distributed implementation is much simpler &

more efficient than vertex programs

Optimizing triple_apply execution

37

Triple_apply needs vertex data for src and dst vertices

1

2

3

4

Vertex SFrames

(1,2)

(2,2)

(3,2)

(4,2)

(1,1)

(2,1)

(3,1)

(4,1)

(1,4)

(2,4)

(3,4)

(4,4)

(1,3)

(2,3)

(3,3)

(4,3)

Edge SFrames

38

Naïve traversal over edges

1

2

3

4

Vertex SFrames

(1,2)

(2,2)

(3,2)

(4,2)

(1,1)

(2,1)

(3,1)

(4,1)

(1,4)

(2,4)

(3,4)

(4,4)

(1,3)

(2,3)

(3,3)

(4,3)

Edge SFrames

Significant IO cost
No cache locality

39

Need walk ordering minimizing loading-unloading

• Efficient option: Hilbert space-filling curves
- Minimum loads of vertex data
- Preserves locality  great cache behavior

SGraph: performance

Performance of SGraph

41

70 sec

251 sec

200 sec

2,128 sec

0 750 1500 2250

GraphLab Create

GraphX

Giraph

Spark

Connected components in Twitter graph

Source(s): Gonzalez et. al. (OSDI 2014)
Twitter: 41 million Nodes, 1.4 billion Edges

 SGraph

16 machines

1 machine

https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf
https://amplab.cs.berkeley.edu/wp-content/uploads/2014/09/graphx.pdf

42

Pagerank on Common Crawl Graph
3.5 billion Nodes and 128 billion Edges

0

2

4

6

8

10

1 machine

M
in

ut
es

 p
er

 it
er

at
io

n

16 CPUs, 1 SSD

SFrame/SGraph Summary

44

SFrame & SGraph

Optimized
out-of-core computation for

ML

High Performance
1 machine can handle:

TBs of data
100s Billions of edges

 Optimized for ML
 . Columnar transformation
 . Create features
 . Iterators
 . Filter, join, group-by, aggregate
 . User-defined functions
 . Easily extended through SDK

Tables, graphs,
text, images

Open-source
❤️

BSD
license

More than
10,000 downloads

A tech-transfer update…
(Not ISTC IP)

The ML pipeline circa 2013

Data
ML

Algorithm

My curve is
better than
your curve

Write a
paper

48

Retail

Movie Distribution

Music

Advertising

Networking

Search

Taxis

Dating

Legal Advice
Human Resources

Coupons

Campaigning

Real Estate

Wearables

CRM

Disruptive companies
differentiated by

INTELLIGENT
APPLICATIONS

using

Machine Learning

49

Promise will only come to be if we

change how ML is done

In 5 years, every successful app will be intelligent

Developers Today: need data scientists,
who write production code &

know about deployment
Very rare: thus huge investments & teams
@Google, Facebook, Microsoft, Amazon

50

Dato’s mission is to
accelerate the creation of

intelligent applications

by making
sophisticated machine learning

as easy as
“Hello world!”

Demo of an intelligent application made easy

52

Since last year…

Dato
customers…

Sophisticated machine learning made easy
 Create Intelligence Accelerants

High-level
ML toolkits

AutoML

tune params, model selection,…


so you can focus on
creative parts

Reusable
features

transferrable feature engineering


accuracy with less data &
less effort

54

High-level ML toolkits
get started with 4 lines of code,
then modify, blend, add yours…

Recommender Image
search

Sentiment
analysis

Data
matching

Auto
tagging

Churn
predictor

Object
detector

Product
sentiment

Click
prediction

Fraud
detection

User
segmentation

Data
completion

Anomaly
detection

Document
clustering Forecasting Search

ranking Summarization …

import graphlab as gl
data = gl.SFrame.read_csv('my_data.csv')
model = gl.recommender.create(data,
 user_id='user',
 item_id='movie’,
 target='rating')
recommendations = model.recommend(k=5)

55

GraphLab Create includes
easy to use, deep learning on multi-GPUs

Deep learning tutorial tomorrow, 4pm!

graphlab.deeplearning.create(data,target=label')

Deep learning in
1 line of code

You can also open
the box and add
your own layers

Average Pooling Layer Rectified Linear Layer

Convolution Layer Sigmoid Layer

Dropout Layer SoftMax Layer

Flatten Layer SoftPlus Layer

Full Connection Layer Sum Pooling Layer

Max Pooling Layer Tanh Layer

56

0.60%

0.65%

0.70%

0.75%

0.80%

0.85%

0 2 4 6 8 10 12

Te
st

 E
rr

or

Hours

Digit recognition benchmark

H2O.ai:
10 machines/80 cores

GraphLab Create
4 min on 4 GPUs

Distributed machine
learning

Your big data
infrastructure

(cloud, hadoop, spark,..)

Sophisticated machine learning made distributed
 Create Intelligence on Huge Data

58

Pagerank on Common Crawl Graph
3.5 billion Nodes and 128 billion Edges

0

2

4

6

8

10

1 machine 16 machines

M
in

ut
es

 p
er

 it
er

at
io

n

256 CPUs 16 CPUs

45 secs/iteration
3B edges/sec

59

Criteo Terabyte Click Prediction

4.4 Billion Rows
13 Features

½ TB of data

0

500

1000

1500

2000

2500

3000

3500

4000

0 4 8 12 16

R
un

tim
e

#Machines

225s

3630s

60

Same code, distributed ML

import graphlab as gl
data = gl.SFrame.read_csv(’s3://…')
model = gl.classifier.create(data,
 target=’click’)

S
in

gl
e

m
ac

hi
ne

M

L
co

de

c = gl.deploy.ec2_cluster.load(’s3://…')

gl.set_distributed_execution_environment(c)

c = gl.deploy.hadoop_cluster.load(’hdfs://…') c = gl.deploy.spark_cluster.load(’hdfs://…')

SFrame/Sgraph summary

62

SFrame & SGraph

Optimized
out-of-core computation for

ML

High Performance
1 machine can handle:

TBs of data
100s Billions of edges

 Optimized for ML
 . Columnar transformation
 . Create features
 . Iterators
 . Filter, join, group-by, aggregate
 . User-defined functions
 . Easily extended through SDK

Tables, graphs,
text, images

Open-source
❤️

BSD
license

More than
10,000 downloads

	Scalable Data Structures for Machine Learning
	The GraphLab journey
	Many systems
	SFrame: Scalable data frame for ML
	Data frames
	Data is usually rows…
	Feature engineering is columnar
	Opportunity for Out-of-Core ML
	Slide Number 9
	SFrame columnar encoding
	Demo: 10TBs of data on one machine!
	SFrame ❤️ all ML
	scikit-learn is awesome, but...
	Demo: 10TBs of data on one machine redux
	Numpy Automatically Backed by Sframes → �Scale many Python packages (scikit-learn, scipy,…)
	ML is not just about tables
	Slide Number 17
	For example…
	Example: Estimating political bias
	But, ML is about all data types…
	ML pipelines combine multiple data types
	Integrating tables and graphs
	Slide Number 23
	Basic graph representation
	SGraph vertex data layout
	SGraph edge data layout
	Deep integration of SFrames and SGraphs
	SGraph columnar  Selection is easy
	SGraph columnar  Adding features is easy
	Performing computations on graphs
	Distributed connected components algorithm
	Properties of graph-parallel algorithms
	Graph-parallel programming abstractions
	Vertex programs [Low et al. ‘10]
	Triple_apply: �simple, highly-parallelizable graph processing abstraction
	Optimizing triple_apply execution
	Triple_apply needs vertex data for src and dst vertices
	Naïve traversal over edges
	Need walk ordering minimizing loading-unloading
	SGraph: performance
	Performance of SGraph
	Pagerank on Common Crawl Graph
	SFrame/SGraph Summary
	Slide Number 44
	Slide Number 45
	The ML pipeline circa 2013
	Slide Number 47
	Slide Number 48
	�Promise will only come to be if we �change how ML is done
	Dato’s mission is to �accelerate the creation of �intelligent applications�� � �� �
	Demo of an intelligent application made easy
	Since last year…
	Sophisticated machine learning made easy�	Create Intelligence Accelerants
	High-level ML toolkits �get started with 4 lines of code, �then modify, blend, add yours…
	GraphLab Create includes �easy to use, deep learning on multi-GPUs
	Digit recognition benchmark
	Sophisticated machine learning made distributed�	 	 				 Create Intelligence on Huge Data
	Pagerank on Common Crawl Graph
	Criteo Terabyte Click Prediction
	Same code, distributed ML
	SFrame/Sgraph summary
	Slide Number 62

