Scheduling Heterogeneous Resources in Cloud Datacenters

Greg Ganger Alexey Tumanov, Timothy Zhu, Mor Harchol-Balter, Mike Kozuch

http://www.istc-cc.cmu.edu/

Center for Cloud Computing

Context: wide variety of workload types

- There are many cluster resource consumers
 - Big Data frameworks, elastic services, VMs, ...
 - Number going up, not down: GraphLab, Spark, ...

Traditional: separate clusters

- There are many cluster resource consumers
 Big Data frameworks, elastic services, VMs, ...
 Number going up, not down: GraphLab, Spark, ...
- Historically, each would get its own cluster
 and use its own cluster scheduler
 - and hardware could be specialized = efficiency

Preferred: dynamic sharing of resources

- Heterogeneous mix of activity types
- Each grabbing/releasing resources dynamically
 Why? all the standard cloud efficiency story-lines

And, diverse specialized servers

- Have a mix of platform types, purposefully
 - Providing a mix of capabilities and features
 - Then, match work to platform during scheduling
 - goal: assign right work to right place at right time

Challenge: Explosion of Options + Tradeoffs

Need to exploit per-job flexibility

- Problem: most schedulers don't
 - usually, preferred option treated as only option
 - a few (Mesos) expose choice, but don't control it
- But, large benefits to doing so
 - better for resource usage AND application service

What do we need to do it

- Informed exploitation of flexibility needs ability to
 - *Quantify* tradeoffs among acceptable options
 - Express options and tradeoffs (concisely)
 - *Exploit* this knowledge to improve resource assignments
 - ... all in a practical manner

STRL Generator: quantify -> express

- Translates high-level objectives to STRL (our language)
- Adapts to new forms of heterogeneity

Alexey Tumanov © May 2015

Space-Time Request Language

- Utility u(p,t): placement $p@t \rightarrow utility u$
- "n Choose k" (nCk)
 - $n \rightarrow$ refers to a group of nodes to choose from
 - $k \rightarrow$ how many nodes to choose

STRL Expression Composition

• Utility u(p,t): placement $p@t \rightarrow$ utility u

$$\begin{array}{l} & \text{nCk} \left(m_i \in \operatorname{rack1}, \texttt{k=2}, \texttt{s=1}, \texttt{d=2}, \texttt{u} \right) \\ & \text{nCk} \left(m_i \in \operatorname{rack2}, \texttt{k=2}, \texttt{s=1}, \texttt{d=2}, \texttt{u} \right) \\ & \text{nCk} \left(\bigcup m_i, \qquad \texttt{k=2}, \texttt{s=0}, \texttt{d=4}, \texttt{u/2} \right) \end{array}$$

max

Latest efforts

- Pushing for wide external use
 - working with Apache Hadoop YARN committers
 - incremental pushing of the concepts, over summer/fall
- Integrating with resource reservation (Rayon)
 toward heterogeneity-aware resource reservation
 allow exploiting flexibility in space and time
- Scalability characterization and enhancement
 e.g., heuristics in place of full MILP optimization
 e.g., separate best-eff short jobs from demanding ones

<u>Takeaways</u>

- Problem: current schedulers don't cope with
 - increased heterogeneity in datacenters
 - explosion of tradeoffs and choices
- Solution: Tetrisched ⁽ⁱ⁾
 exploits concisely expressed options and tradeoffs
- End result:
 - better schedules of heterogeneous mixes
 - easier adoption of specialized hardware
- Current steps:
 - integrating into mainline YARN (Apache Hadoop)
 - enhancing scalability and coupling with reservations