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Context: wide variety of workload types 

•  There are many cluster resource consumers 
▫  Big Data frameworks, elastic services, VMs, … 
▫  Number going up, not down: GraphLab, Spark, …  
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Traditional: separate clusters 

•  There are many cluster resource consumers 
▫  Big Data frameworks, elastic services, VMs, … 
▫  Number going up, not down: GraphLab, Spark, …  

• Historically, each would get its own cluster 
▫  and use its own cluster scheduler 
▫  and hardware could be specialized = efficiency  
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Preferred: dynamic sharing of resources 

• Heterogeneous mix of activity types 
• Each grabbing/releasing resources dynamically 
▫  Why?  all the standard cloud efficiency story-lines 

4 

Data Center Resource Scheduling Substrate

8/24/15 



And, diverse specialized servers 

• Have a mix of platform types, purposefully 
▫  Providing a mix of capabilities and features 
▫  Then, match work to platform during scheduling 
�  goal: assign right work to right place at right time 
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Challenge: Explosion of Options + Tradeoffs 
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Need to exploit per-job flexibility 
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•  Problem: most schedulers don’t 
▫  usually, preferred option treated as only option 
▫  a few (Mesos) expose choice, but don’t control it  

• But, large benefits to doing so 
▫  better for resource usage AND application service 



What do we need to do it 
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•  Informed exploitation of flexibility needs ability to 
▫  Quantify tradeoffs among acceptable options 
▫  Express options and tradeoffs (concisely) 
▫  Exploit this knowledge to improve resource assignments 

▫  … all in a practical manner  
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•  Translates high-level objectives to STRL (our language) 
•  Adapts to new forms of heterogeneity 
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Space-Time Request Language 
•  Utility u(p,t): placement p@t à utility u 
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•  “n Choose k” (nCk) 
n à refers to a group of nodes to choose from 
k à how many nodes to choose 



STRL Expression Composition 
•  Utility u(p,t): placement p@t à utility u 
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Latest efforts 

•  Pushing for wide external use 
▫  working with Apache Hadoop YARN committers 
▫  incremental pushing of the concepts, over summer/fall 

•  Integrating with resource reservation (Rayon) 
▫  toward heterogeneity-aware resource reservation 
▫  allow exploiting flexibility in space and time 

•  Scalability characterization and enhancement 
▫  e.g., heuristics in place of full MILP optimization 
▫  e.g., separate best-eff short jobs from demanding ones 
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Takeaways 

•  Problem: current schedulers don’t cope with 
▫  increased heterogeneity in datacenters 
▫  explosion of tradeoffs and choices 

•  Solution: Tetrisched J 
▫  exploits concisely expressed options and tradeoffs 

• End result: 
▫  better schedules of heterogeneous mixes 
▫  easier adoption of specialized hardware 

• Current steps: 
▫  integrating into mainline YARN (Apache Hadoop) 
▫  enhancing scalability and coupling with reservations 
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