
http://www.istc-cc.cmu.edu/

Scheduling	
 Heterogeneous	
 Resources	
 	

in	
 Cloud	
 Datacenters	

Greg Ganger
Alexey Tumanov, Timothy Zhu,
Mor Harchol-Balter, Mike Kozuch

Context: wide variety of workload types

•  There are many cluster resource consumers
▫  Big Data frameworks, elastic services, VMs, …
▫  Number going up, not down: GraphLab, Spark, …

Dryad

Pregel

CassandraHypertable

8/28/15

2

Traditional: separate clusters

•  There are many cluster resource consumers
▫  Big Data frameworks, elastic services, VMs, …
▫  Number going up, not down: GraphLab, Spark, …

• Historically, each would get its own cluster
▫  and use its own cluster scheduler
▫  and hardware could be specialized = efficiency

3

MPI

8/24/15

Preferred: dynamic sharing of resources

• Heterogeneous mix of activity types
• Each grabbing/releasing resources dynamically
▫  Why? all the standard cloud efficiency story-lines

4

Data Center Resource Scheduling Substrate

8/24/15

And, diverse specialized servers

• Have a mix of platform types, purposefully
▫  Providing a mix of capabilities and features
▫  Then, match work to platform during scheduling
�  goal: assign right work to right place at right time

5

Data Center Resource Scheduling Substrate

8/24/15

Challenge: Explosion of Options + Tradeoffs

6

GPU

MPI

Availability

m1
m2

m3
m4

ra
ck

1
ra

ck
2

time
m1
m2

m3
m4

ra
ck

1
ra

ck
2

m1
m2

m3
m4

Option 1 Option 2

Option 3 Option 3 Option 3 Option 3 Option N

8/24/15

Need to exploit per-job flexibility

7
8/28/15

•  Problem: most schedulers don’t
▫  usually, preferred option treated as only option
▫  a few (Mesos) expose choice, but don’t control it

• But, large benefits to doing so
▫  better for resource usage AND application service

What do we need to do it

8
8/28/15

•  Informed exploitation of flexibility needs ability to
▫  Quantify tradeoffs among acceptable options
▫  Express options and tradeoffs (concisely)
▫  Exploit this knowledge to improve resource assignments

▫  … all in a practical manner

Job schedule
and placementjob type

deadline
STRL

Compiler MILP solver

objective function
supply/demand constraints

TetriSched Scheduler Core

Time

R
es

ou
rc

essum

max min
t

U
til

ity MPI

Hadoop

...Fr
am

ew
or

k
P

lu
gi

ns

STRL Generator

STRL expression

max

nCk nCk

Job History
Server

runtime
estimate

MILP

GENERATE AGGREGATE COMPILE SOLVE

STRL Generator: quantify -> express

•  Translates high-level objectives to STRL (our language)
•  Adapts to new forms of heterogeneity

Alexey Tumanov
© May 2015 9

Space-Time Request Language
•  Utility u(p,t): placement p@t à utility u

Alexey Tumanov © May 201510
time

m1
m2

m3
m4

ra
ck

1
ra

ck
2

ut
ili

ty

3

u

4

u/2

nCk () k=2, s=1, d=2, u

nCk () k=2, s=0, d=4, u/2

€

mi ∈ rack1,

€

∪mi,

•  “n Choose k” (nCk)
n à refers to a group of nodes to choose from
k à how many nodes to choose

STRL Expression Composition
•  Utility u(p,t): placement p@t à utility u

nCk () k=2, s=1, d=2, u

€

mi ∈ rack1,

nCk () k=2, s=0, d=4, u/2

€

∪mi,

nCk () k=2, s=0, d=4, u/2

€

∪mi,

nCk () k=2, s=1, d=2, u

€

mi ∈ rack2,

max
OR

Alexey Tumanov © May 201511

Job schedule
and placement

job type
deadline

Time

R
es

ou
rc

es

t

U
til

ity MPI

Hadoop

...Fr
am

ew
or

k
P

lu
gi

ns

STRL Generator

STRL expression

max

nCk nCk

STRL
Compiler MILP solver

objective function
supply/demand constraints

TetriSched Scheduler Core

sum

max min
MILP

TetriSched

Alexey Tumanov © May 201512

Exploit

Quantify Express

Latest efforts

•  Pushing for wide external use
▫  working with Apache Hadoop YARN committers
▫  incremental pushing of the concepts, over summer/fall

•  Integrating with resource reservation (Rayon)
▫  toward heterogeneity-aware resource reservation
▫  allow exploiting flexibility in space and time

•  Scalability characterization and enhancement
▫  e.g., heuristics in place of full MILP optimization
▫  e.g., separate best-eff short jobs from demanding ones

13
8/28/15

Takeaways

•  Problem: current schedulers don’t cope with
▫  increased heterogeneity in datacenters
▫  explosion of tradeoffs and choices

•  Solution: Tetrisched J
▫  exploits concisely expressed options and tradeoffs

• End result:
▫  better schedules of heterogeneous mixes
▫  easier adoption of specialized hardware

• Current steps:
▫  integrating into mainline YARN (Apache Hadoop)
▫  enhancing scalability and coupling with reservations

14
8/28/15

