ISTC-CC Presentation by

Georgia Tech (8/27/15)

P

Karsten Schwan (site director), Calton Pu

(presenter), with L. Liu, S. Yalamanchili, G. A
Eisenhauer, A. Gavrilovska, M. Wolf
Georgia Tech

. Intel Science & Technology
http://www.istc-cc.cmu.edu/ Center for Cloud Computing

Highlights of ISTC-CC (Georgia Tech)

o First part: yearly update on various projects

» Karsten Schwan, Ling Liu, Calton Pu, Sudha Yalamanchili,
Greg Eisenhauer, Ada Gavrilovska, Matt Wolf

» Many students at PhD, MS, and undergraduate levels

« Second part: some details on automated management
work (linking into Project Pulse)

« Highlights on work funded by ISTC-CC, or conforming

to Intel open IP policy

= Significant funding amplification from many industry
collaborators and government funding agencies such as

NSF and DoE

Intel Science & Technology %
Center for Cloud Computing

GraphReduce Architecture (Schwan)

A F & = N O e . 0t =

UserInfoTuple

1. UserGather) {...}

2. UserApply() (...}

3. Usarscatter) (..} i

2. VertoxDatoType Partitioned Shard

5. EdgeDataType Graph Synchronization
[Partition Engine].:;>[Datag;;“;‘eement]CZD[Compute Engine J
S Data E ECompute

[GPU]

:@:; _.-"}Input Graph
l@ -H-_'-,,--- =

SC 2015, GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

Technology j ;
Computing

Optimizations on GraphReduce

———————————————

e]
N E, .L‘.
1 1 -
smz | ! III i
: R
i
. TNH —@ﬁ
|
g F]

J O Nt Nt Y T
Shards Shatic Streams ray Streams
GPU =P :I:I:I:[

- Asynchronous execution and Spray (deep-copy)
operation

- Dynamic frontier management

- Dynamic phase fusion and elimination

Intel Science & Technology]E
Center for Cloud Computing

Gains by GraphReduce

24 85
GR Speedup Over X-Stream O BFS — GR Speedup Over GraphChi OBFS
20 r m sSSP =T
65 | W SSSP
e L | PageRank - g'g i B PageRank
= @cc 830 T e
§u $4 [
s |
& B
st 2 3{5) -
[[l 7l
“T 2 10
o U 5 rl.-m 1 2 i 1 E E {5) [> rl..l_1 1 E
krondogn21 nipkkt160 uk-2002 orkut cage1s AVG kron-logn21 nipkkt160 uk-2002 orkut cage1s AVG
GraphReduce’s speedup over Graphchi and X-Stream for out-of-memory graph inputs
90 500
80 A CBFS MSSSP M PageRank ECC = 430 nipkkt160
= 70 1 '§ :gg | O unoptimized @ optimized
2o] g
§ 50 4 £ 300 |-
S0 £ 250 [
E‘ 30 4 % 200
2 E 150
20 H § 100 L
10 ~ so0 |
O T O 1 1 1
kron-logn21 nlpkkt160 uk-2002 orkut cagel5 BFS SSSP PageRank CcC

Benefits of GraphReduce optimizations over memcpy time

Intel Science & Technology
Center for Cloud Computing

LUULY Ul L 1 1AdUVVULY VYV

omplicated System

Error-prone

LL Issue Study

ﬁﬁ\—»@+ Of

_ Issue Pattern Better Software & Debugging Tools)

N
-

| SOCC'15 |

Programming

Half of the issues are independent
The issue correlations are not complex as we expected
One third of the issues have similar causes

For memory issues, GC is still the No. 1 concern

The statement “99.99% of data reliability” is challenged
One third of programming issues relate to interfaces
The logging system is error-prone

ISsue Hive |[-+-| Pig Flume

\1/ HCatalog | * = | Mahout || Cascading
B l l l
Description Patches Follow-up Source Code
9 Discussions Analysis

" |
o r&é‘ﬁ =] o
T =5 W k)
AT =1 /0

@\Programming %
ysiems 00IS

1 Correlations Between Issues

Issues are independent; 33% of issues have similar causes, etc.

2 Correlations With System Characteristics
Systems, programming, tools

Big Data Systems Research (L. Liu)

« Optimizations for Fast Iterative Graph Computations
= GraphLego:
- Resource Aware Graph Parallel Abstractions (Graph Cube
and Slice, Strip, Dice) [ACM HPDC 2015]
s GraphTwist:
 Approximation with utility-aware pruning [VLDB2015]
- Edge pruning by slices: removing some insignificant edges
* Vertex pruning by cuts: removing some insignificant vertices
= GraphMap:
- Workload aware Distributed Graph Processing Framework
[IEEE SC2015]

Intel Science & Technology %
Center for Cloud Computing

Shared Memory Optlmlzatlon in V|rt Cloud

« Shared Memory Management Mechanisms
s MemPipe:

» Shared memory channels for improving
communication efficiency between co-resident VMs

» Incremental shared memory management

= MemFlex

» Shared memory based ballooning (inflate and
deflate)

+ Shared memory based optimization for memory
page fault.

= MemMon
- Memory working-set monitoring and estimate.

m Poster by Qi Zhang (L. Liu) C%I

Optimizing Performance and Productivity

on Heterogeneous Processors
& wh

Sudhakar Yalamanchili

School of Electrical and Computer Engineering
Georgia Institute of Technology

Collaborators: H. Wu, M. Gupta, C. Kersey, H. Kim, I. Saeed, J.
Young, H. Wu, and LogicBlox Inc.

. Intel Science & Technology
http://www.istc-cc.cmu.edu/ Center for Cloud Computing

Accelerating Relational Processing

=Finding cliques _____—— Multi-predicate Join
0 triangle(x,y,z)<IE(x,y),E(y,z),E(x,z)| X<y<Z. /

" 4CI(XIYIZIW) 4_E(XIY)IE(XIZ)IE(XIW)IE(YIZ)IE(YIW)IE(ZIW)I X<Y<zZ<Ww.

GPU Extensions
at Georgia Tech
I I

LogicBlox Inc.
Runtime

 Relational computations over out of core data sets

« Implementation of multi-predicate join for graph
processing using GPUs
= 3-clique and 4 clique problems

w D. Zinn, M. Aref, and S. Yalamanchili, “Multipredicate Join Algorithms for Accelerating Relational Graph Procesgi{g o
: Proceedings of ADMS, September 2014

Out-of-Core Data Management

| | d
I 1 nternal m
6 : JII I T | RepIrel;entation n 5 3 4 5 5
,,5 i
I I “— [‘»
y 1 4lea= 1= C) VA BVANE
3 : ,,..4--“-,...1 | 2 3 6 4 5 6 5 7 7 7
19 | |I : : ® Trie representation of edges
e 0 B¥
— 9 3 5 6 oo‘_fo ", E(x,y) E(x,2) E(y,z)
f 1 T T 1 1 = Root Root Root

triangle(x,y,z)<-E(x,y),E(y,z),E(X,z), Xx<y<z ‘» x

Q) «—
N+—»
N «—

17 |

N———un

L|1
7
M Titan W Titan+K40

« Large, out of core

graphs
i i i « Baseline is CPU boxed
I multi-predicate join
« SSD and PCle are not

ORKUT RAND16 RMAT16 RAND80 RMAT80 TWITTER the bottlenecks %
Graph
Intel Science’ 2 —

Center for Cloud Computing

>
[~
O
=]
(%)
£
©
[oT4]
®©
Q.
=)
O
(N
[}
Q.
(%)

Near Memory Data Intensive Computing

Co//aborat/ve Discussions with _/'nte/ Labs (N. Carter)

« Move Analytics Primitives (RA) into the
memory system
o Custom low power GPU(Harmonica)

s Progress on Base compiler for in-memory
GPU

A. Gavrilovska (CS), K. Schwan (CS), Yalamanchili (ECE)

» Technology Assessment @

HPCC SYSTEMS®

= Collaboration with Lexis Nexis @ LexisNexis:

= Assess the impact of In-memory ro_.
acceleration for HPCC HQ;
Engineering T

Leveraging eBoxes and Compilers

._z_: . 4 w—h' == - -

Ada Gavrilovska
Georgia Tech

. Intel Science & Technology
http://www.istc-cc.cmu.edu/ Center for Cloud Computing

Enhancing the Edge via eBox-based Services

L
A F & = N O e . 0t =

« Some results presented last year, also
supported by ISTC-EC in the past and— B——
VMware apps from App

« Leverage high-density/low-power edge
boxes — eBoxes

 Infrastructure for app streaming,
caching, ephereral app delivery;

 Fully integrated in Android stack

- Outcome: 2x faster app delivery, 10x| dshverv
faster app descovery, 70% reduction 1r
traffic; no performance impact

« AppFlux: Taming App Delivery
@TRIOS’15 (Bhardwaj, Agarwal,
Gavrilovska, Schwan); others in
submission/preparation

echnology j ;
Computing

Apps submitted

updates

Apps and their
updates stored
and streamed
from eBoxes

Apps and their
updates pushed
to eBoxes

Compiler-Assisted Resource Management

R F & . e - =

e Goal: dynamic resource allocation to concurrent

workloads/workload components 4 E—)
« Problem: profile-based techniques limited
effectiveness (input-dependent requirements, Lo B B o B
irregular applications...) m—
« Approach: LLVM-based compiler infrastructure to _ Framen 04 J
instrument binary with “beacons”. Beacons '
generate information based on dynamic input and o
actual execution path taken. Intercepted by / st | | insmens / et /
resource managers (e.g., VM manager, VCPU Qe st coe
thread scheduler, runtime-level scheduler...) ~ N \/ N \/
« Outcome: improved workload performance, — ormcummossimsmes ' '

reduced performance variability, improved l
resource use and management efficiency

« Compiler-assisted Load Balancing on Large
Clusters @PACT’15 (Deodhar, Parikh, | ‘
Gavrilovska, Pande); others in
submission/preparation

Automated Cloud Management

through Experimental
Measurements

Calton Pu

Professor and J.P. Imlay Chair in Software
Georgia Institute of Technology

Many PhD, MS, Undergraduate students and indust

collaborators

. Intel Science & Technology
http://www.istc-cc.cmu.edu/ Center for Cloud Computing

Elba: Automated Measurements

‘(o) Config. Desigrrg ‘(4) Reconﬁguratio’n

Benchmark Adapt. | |Automa’Fed . [lu
specs Cost ation Rocult
Experiment
Spec. Lang.
Automated, (3) Analyzer
1 Staging Cycle
Analyzer
(Mulini W Moniters Staging
TBL L utini J [~ Lneplwment
App :
I ‘(2) Execution
Workload Workload Drivers [System Under Test
Driver

Deployment . .
Scripts | Evaluation / Analysis

I ‘(1) Code Generation / Deployme#‘zt %

N-tier Benchmarks

e _F & 3 F- =
E Lt

Example Experiment: RUBBoS benchmark
based on Slashdot

Sample configuration (1/2/1/2)

@ & | > .. .@
Workload ‘
| Apache : :

e - Web | Tomcat App. | CJDBC i MySQL
Server Server Server

Elba Experience

« Experimental studies analyzing performance
data

= Production-scale experiments on “real data
centers”

= Collaboration with many industry partners
» Funding amplification from NSF

« Between 2013 and 2014: 13 papers

IEEE CLOUD, SCC, ICDCS, IRI, Big Data Congress,
BigData, ACM TRIOS

More than 40 papers (2005 — 2014)

@

Automating Experiments

» Transform and generate scripts to automatically
create, manage and analyze experiments from
user-friendly specification files

« Develop open tools for automated experiments

o Support a wide variety of evolving clouds,
benchmarks and performance monitors

o Support flexible customization for many
configuration parameters

o High resolution monitoring at low cost

m i
Intel Science & Technology
Center for Cloud Computing

Response time [s]

Example: Very Short Bottlenecks (TRIOS’13)

o High resolution monitoring at low cost:
o See VSBs at tens of milliseconds
o A few percent monitoring overhead

P-I-T Response time at
50ms resolution

2.5

2 B
1.5t

8oms

1
L\J Il

oL -

20
Tlmellne [s]

Cumulative request
response time distribution

1e+06 1
10000 |
1000 |
/‘100]
10 |
Log scale1 |

100000

Frequency [#]

long requests > 2%

11

0 2s 4s 6s 8s 10s
Response time [s]

Five Steps of Experimental Process

~

User-provided |
configuration
1. Input Scripts and generator
Experiment execution
Metadata (XML))
2. Generate Provision environment
Experiment Run benchmark
h Setup, tear down
infrastructure
3. Execute
experiment on Performance data

m extraction & load
into database
4. Collect, extract,
load experimental

5. Analyze Results
(Excel and
statistical tools)

Gy

Scale of Experiments

Figures for Fall 2014 and Spring 2015; taking into account diversity of
work, including large-scale experimentation and infrastructure

development activities

Emulab PRObE Local Cluster
Experiments
(mins)* 91,728 4,641 2,925
Nodes Used (#) 6,048 1,092 4,516
Experiments (#) 14,112 714 450

M *Experimental workloads range from 3 - 7 mins, each lasting about 20 - 30 min (3 ;I |

Step 2: Script Transformation Example

Code Template ine

1 template

Intermediate Representations

source set_elba_env.sh
mkKkdir -p <xsl:value-ot
select="//params[@name="RUBBOS__
TOP’]/ @value”/>

XML Input

<xtbl name=“Rubbos” version=“0.1">
<params name=“OUTPUT_HOME”
value=“/opt/rubbos/output”/>
<params name=“RUBBOS_TOP”
value=“/mnt/rubbos”/>

</xtbl>

S

<name id=“Tomcat_deploy.sh” loc=*/home/scripts”/>

ource set_elba_env.sh

mkdir -p /mnt/rubbos

A |
J1e>

Occurs in
emplates

)

Experiment-specific Scripts

home/cerinte / TOMCAT DEPINY ch

SC
SC

source set_elba_env.sh

#/home/scripts/TOMCAT_DEPLQOY.sh

kdir -p /mnt/rubbos

And 3 script files |

_’AJIJJ

Script Size o

f Experiment Runs

The following figures correspond to deploying a 16-node, (4 clients;
2W\4A\1M\4D), RUBBoS application benchmark in the Emulab cluster.
Generated lines are an intermediate representation that enable
application, DBMS, OS and user-specific customizations to be applied.

Templates I'g:l!\mgilsa; ¢ Final Scripts
(XSLT Lines) Lines) (Shell Script Lines)
Core 900 400 1500
Deployment 3300 2000 2200
Benchmark 1400 500 500

Step 4: Extract/Load Monitor Results

 Challenge: many performance monitors,
many configuration parameters, many
output formats

« Automated Approach:

o use script transformation techniques to
annotate monitor output

o generalize parser to consume schema
(from the annotations) and parse the
encapsulated data accordingly

Gy

Example 1: dstat

B L . < &

« Some monitors can output simple, CSV-
formatted data files

"Dstat @.6.9 C5V output"

“"Author:","Dag Wieers =dag@wieers.com=",,,,"URL:","http://dag.wieers.com/home-made/dstat/"
“Host:","169",,,,"User:"," root"

*Cmdline:","dstat -¢c -d -1 -m -n -r -y —vm —-no —output /tmp/169.254.100.3.csv 1", ,;,"Date:","25 Feb 2012 19:14:49 E5T"

“"total cpu usage",,,,,,"dsk/total",,"interrupts",,,"memory usage",,,,"net/total",,"ic/total",,"system",,"virtual memory",, .

"|..|5 r-ll .."5}"5", Ilid 'lll 0 llwaill '"hiq"; Ilsiqll 0 LL] rEadll’llwritll 'll15ll '“1?"r" lEII’“ usedll 0 llbuffll’ Ilcachll 'll-r r"EE'", n recvllrll send“ . L1} readll;“writll . LL} 1n-t|
@.731,8.794,97.731,08.536,9.066,0.144,378918.0850,14976.328,1.831,18.487,1.806,219825408.8,23876864. 0, 249458688.0, 3556587648.8,
g.6,0.6,1006.0,0.0,0.0,8.0,0.0,0.0,0.0,0.8,4.8,219045868.0, 23076864 .8, 2494700976.8, 3556474660.8,468.0,360.0,0.0,0.0,28.0,16.8,8
@.990,6.0,99.019,0.98,0.9,9.9,9.0,0.0,2.0,0.0,2.0,219045888.0,230708604.0, 249470976.8,3556474880.0,00.0,0.0,0.0,0.0,26.0,16.8,0
10.309,59.794,23.711,5.155,1.931,9.8,2867200.0,139204.0,0.8,23.98,37.0,6553668192.8,23093248.0,250908672.08,3118096496. @, 3651.8,
5.8,44.8,58.8,08.8,1.8,8.8,245760.0,0.0,2.0,1.0,13.8,219576368.0,23093248.0,251827456. 8, 3554369536.0,616.0,570.0,2.9,0.8,532.8

9.0,0.0,100.9,0.9,0.0,0.9,0.0,0.0,0.0,0.0,1.9,219578368.0, 23993248, 0,251027456.@, 3554369536.0,60.0,0.0,0.0,0.8,22.8,20.0,0.0,
9.0,0.0,100.9,0.9,0.0,0.9,0.0,0.9,2.0,0.0,1.98,219578368.0, 23993248, 0, 251027456. @, 3554369536.0,0.0,0.0,0.0,0.0,23.9,14.9,0.0,0
9.9,0.0,100.9,0.9,0.0,0.9,0.0,0.0,0.0,0.0,2.9,219578368.0, 23093248, 0, 251027456. 0, 3554369536.0,120.0,0.0,0.0,0.9,19.0,14.9,0.90
8.999,0.9,98.020,0.0,0.0,0.990,0.0,90112.0,0.0,5.0,4.0,210578368.9,23101440. 0, 251019264.0, 3554360536.0,120.0,42.0,0.0, 10.0, 34
9.0,0.0,100.9,0.9,0.0,0.9,0.0,0.0,2.0,0.0,0.9,219570176.0, 23101440, 0, 251027456. @, 3554369536.0,0.0,0.0,0.0,0.0,18.9,14.8,0.0,0
7.0,14.9,79.9,0.0,0.0,0.9,9.0,81920.0,0.0,4.0,55.0,220344320. @, 23109632.0,251031552. @, 3553583104.9,5386.0,6105.9,9.0,8.0, 294,
2.020,12.121,84.848,0.9,1.910,0.0,8192.0,196608.9,2.98,11.0,26.9,219537408.9,23130112. 0, 251039744.0,3554361344. 0, 2536.0, 1989.9
2.0,5.0,91.9,0.9,0.0,2.0,0.0,0.0,0.0,0.0,433,0,228413440.0,23130112.0,251030744.0, 3545485312.0,84721.0,84632.9,0.9,0.0,666.0,
9.0,0.0,99.9,0.8,1.0,0.0,0.0,0.0,2.9,0.0,31.0,228540416.0, 23130112, 0,251039744. @, 3545358336.0, 2680.0,8347.0,0.9,0.08,80.0,66.0
@.99¢,0.9,99.910,0.0,0.9,0.0,0.9,0.9,0.0,0.0,1.0,228540416.0,23130112.@, 251039744, 0, 3545358336.0,0.9,0.0,0.0,0.9,18.0,11.0,0,
8.0,1.0,99.9,0.9,0.90,0.0,0.0,0.0,2.9,0.0,1.08,228540416.0,23130112.0,251039744.0, 3545358336.0,60.0,0.0,0.9,0.0,23.9,16.9,0.0,0

Intel Science & Technology
Center for Cloud Computing

Example 2: sar

L
A F & = N O e . 0t =

« Other monitors can produce highly variable and
difficult-to-parse output (syntax & semantics)

Linux 2.6.32-358.18.1.e16.xB6_64 (elba2) 89/18/2013 _x86_64_ (4 CPU)
28:11:18 AM CPU suser %nice %5ystem %ilowalt %steal %idle
28:11:19 AM all 1.81 8.0 @.25 9.50 9.08 98.24

T11:] 7,08 B.00 T.02 z. . .
88:11:19 AM 1 .08 8.0@ 0.08 08.80 9.8 188.08
28:11:19 AM 2 .08 8.00 @.00 9.80 9.08 lea.00
88:11:19 AM 3 .08 8.8@ @.99 .80 9.8 99,81
28:11:18 AM proc/s cswch/s
88:11:19 AM 2.84 2868.37
28:11:18 AM pswpin/s pswpout/s
88:11:19 AM 8.8 @.80
@8:11:18 AM pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s Svmeff
88:11:19 AM 8.8 28.57 646,94 .08 541.84 @.08 @.88 B.0@ 6.0@
88:11:18 AM ips rips wtps bread/s bwrtn/s
28:11:19 AM 12.24 o.80 12.24 .08 114.29
@28:11:18 AM frmpg/s bufpg/s campg/s
28:11:19 AM -61.22 2.84 3.86
88:11:18 AM kbmemfree kbmemused %smemused kbbuffers kbcached kbcommit — %commit
@8:11:19 AM 7179524 711684 9.82 36444 456152 254532 1.6@
88:11:18 AM DEV tps rd_sec/s wr_sec/s awvgrg-sz avgqu-sz await svctm Hutil
28:11:19 AM dev8-@ 5.1@ .08 57.14 11.28@ @.83 5.4@ 5.208 2.65
28:11:19 AM dev253-8 7.14 .88 57.14 B.@e @8.83 4,14 3.71 2.65
28:11:19 AM dev253-1 @.00 .08 .08 8.00 @.00 @.00 B.08 6.00
28:11:19 AM dev253-2 @.00 .08 .08 8.00 @.00 @.00 B.08 6.00
28:11:18 AM IFACE repcks/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s
88:11:19 AM lo 3.86 3.86 B.16 8.16 @.08 @.88 B.0@
88:11:19 AM ethe 1271.43 1173.47 679.75 854.51 @.08 @.88 B.0@

AM

Intel Science & Technology
Center for Cloud Computing

@8:11:18 IFACE rxerr/s txerr/s coll/s rxdrop/s tiwdrop/s txcarr/s rxfram/s rxfifofs txfifo/s

Transtorming Output of sar

__ = 4 S —

tree = ¥MLTree.parse(input_file)
root = tree.getroot() XML Tree Parser
node_list = list(root.iter())
for 1 in node_list:

Parsing the following Te iiog m racord g T Text recor

Vel'Sion Of SAR o c;;f: E:value_5tr‘[lenl[La5t_5tr]l:1enl[new_5tr]l-1]
output is reduced to e atr P valueatr + "t

parsing a XML tree cop ot T vatestr

if len{i.attrib) ==@:
#check for invisibile characters like tabs and line feeds
test_list = [ord(s) for s in i.text if ord{s) == 9 or ordis) == 18]
if len{test_list)==0:

key_str = key_str + i.tag + ","
value_str = value_str + i.text + ","
SAR Annotated Output for k,v in i.attrib.iteritems():
«<?xml version="1.8" encoding="UTF-8"7> key_str = key_str + k + .7
<!DOCTYPE sysstat PUBLIC "DTD w2.13 sysstat //EN" value_str = value_str + v + " "
"http://pagesperso-orange.fr/sebastien.godard/sysstat.dtd"> new_str = value_str)
<sysstat= #output row_list to a file for database import

<gsysdata-version=2.13</sysdata-version>
=host nodename="node=5.111base.elba.marmot.pdl.cmu. local”=
<gysname=Linux</sysname=
=release=2.6.43.8-1. fcl5.x86_64=/release>
<machine=x86_64=/machine=
<number-of=cpus=2</number-of=cpus>
=file-date=20815-87-18=</file-date=
<gtatistics= _
<timestamp date="2815-87-19" time="81:16:04" utc="1" interval="1"=>
=cpu=-load=
<cpu number="all" user="6.63" nice="@.00" system="3.086" iowait="@.00" steal="0.00" idle="98.31"/
<cpu number="@" user="13.40" nice="@.@0" system="5.15" iowait="@.008" steal="0.00" idle="81.44"/>
<cpu number="1" user="9.00" nice="0.800" system="1.81" ilowait="@.80" steal="0.00" idle="98.99"/>
=</cpu-load=>
<process—and-contexT-swlTch per="second” proc="Z.@d" CswCh=" 1o88.dd />
- <swap-pages per="second" pswpin="@.80" pswpout="0.08"/>

Ir.
Center for Cloud Computing

v

o

Georgia Tech nghhghts 1(0)§ ISTC CC

« Research on big data graph algorithm
optimization
= K. Schwan, L. Liu

» Research on program optimization for
heterogeneous processors and memories
= S. Yalamanchili, A. Gavrilovska

« Research on automating experiments on large
scale benchmarks
= C. Pu

« Many publications, some tool releases, more
planned

Intel Science & Technology %
Center for Cloud Computing

