
http://www.istc-cc.cmu.edu/

ISTC-CC Presentation by
Georgia Tech (8/27/15)

Karsten Schwan (site director), Calton Pu
(presenter), with L. Liu, S. Yalamanchili, G.
Eisenhauer, A. Gavrilovska, M. Wolf

Georgia Tech

• First part: yearly update on various projects

▫ Karsten Schwan, Ling Liu, Calton Pu, Sudha Yalamanchili,
Greg Eisenhauer, Ada Gavrilovska, Matt Wolf

▫ Many students at PhD, MS, and undergraduate levels

• Second part: some details on automated management
work (linking into Project Pulse)

• Highlights on work funded by ISTC-CC, or conforming
to Intel open IP policy

▫ Significant funding amplification from many industry
collaborators and government funding agencies such as
NSF and DoE

2

Highlights of ISTC-CC (Georgia Tech)

GraphReduce Architecture (Schwan)

3

SC 2015, GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems

Optimizations on GraphReduce

 Asynchronous execution and Spray (deep-copy)
operation

 Dynamic frontier management

 Dynamic phase fusion and elimination

4

Gains by GraphReduce

GraphReduce’s speedup over Graphchi and X-Stream for out-of-memory graph inputs

Benefits of GraphReduce optimizations over memcpy time

5

6

Understanding Issue Correlations:
A Case Study of the Hadoop System

Scalable distributed systems are complex [Yuan et al., OSDI’14]

Complicated System

Issue Study

Issue Pattern

Error-prone

+
Hard to Debug

+

Better Software & Debugging Tools

+

SOCC’15

7

Our Findings

• Half of the issues are independent

• The issue correlations are not complex as we expected

• One third of the issues have similar causes

•

Tools

Programming

Systems

• For memory issues, GC is still the No. 1 concern

• The statement “99.99% of data reliability” is challenged

• One third of programming issues relate to interfaces

• The logging system is error-prone

•

8

Methodology Used in Our Study

Computation

Storage

…

HDFS

HBase

HCatalog Mahout

MapReduce

Cascading

Hive Pig Flume

…

Closed Issue

Examined Issue 2180 2038

2359 2340

Sampling Period ~6 years 5 years

Sampling Rate

89.8%

Issue

Description Patches Follow-up

Discussions

Source Code

Analysis

IssueID

Create/Commit Time

Subcomponent Type Causes

CorrelatedIssueID ……

HPatchDB

Labeling

9

Insights from Analyzing Issues

2

Correlations Between Issues

Issues are independent; 33% of issues have similar causes, etc.

Correlations With System Characteristics

Systems, programming, tools

1

Tools

Programming

Systems

Big Data Systems Research (L. Liu)

• Optimizations for Fast Iterative Graph Computations

▫ GraphLego:

 Resource Aware Graph Parallel Abstractions (Graph Cube
and Slice, Strip, Dice) [ACM HPDC 2015]

▫ GraphTwist:

 Approximation with utility-aware pruning [VLDB2015]

 Edge pruning by slices: removing some insignificant edges

 Vertex pruning by cuts: removing some insignificant vertices

▫ GraphMap:

 Workload aware Distributed Graph Processing Framework
[IEEE SC2015]

10

Shared Memory Optimization in Virt. Cloud

• Shared Memory Management Mechanisms
▫ MemPipe:

 Shared memory channels for improving
communication efficiency between co-resident VMs

 Incremental shared memory management

▫ MemFlex
 Shared memory based ballooning (inflate and

deflate)
 Shared memory based optimization for memory

page fault.

▫ MemMon
 Memory working-set monitoring and estimate.

11
Poster by Qi Zhang (L. Liu)

http://www.istc-cc.cmu.edu/

Optimizing Performance and Productivity
on Heterogeneous Processors

Sudhakar Yalamanchili
School of Electrical and Computer Engineering

Georgia Institute of Technology

Collaborators: H. Wu, M. Gupta, C. Kersey, H. Kim, I. Saeed, J.
Young, H. Wu, and LogicBlox Inc.

13

Accelerating Relational Processing

Finding cliques

 triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z.

 4cl(x,y,z,w)<-E(x,y),E(x,z),E(x,w),E(y,z),E(y,w),E(z,w), x<y<z<w.

Multi-predicate Join

H. Wu, D. Zinn, M. Aref, and S. Yalamanchili, “Multipredicate Join Algorithms for Accelerating Relational Graph Processing on
GPUs,” Proceedings of ADMS, September 2014

Haicheng Wu and S. Yalamanchili

SSD
Host
Mem

GPU
Mem

LogicBlox Inc.

Runtime

GPU Extensions

at Georgia Tech

• Relational computations over out of core data sets

• Implementation of multi-predicate join for graph
processing using GPUs

▫ 3-clique and 4 clique problems

14

Out-of-Core Data Management

Box [3 x 5,6 y< ,- <z<]

3 4

6 7

Root

5

7

3 4

6 7

Root

5

7

Root

6

7

x

y

Z

E(x,y) E(x,z) E(y,z)

0

1

2

3

4

5

LJ ORKUT RAND16 RMAT16 RAND80 RMAT80 TWITTER

Sp
e

e
d

u
p

 a
ga

in
st

 C
P

U

Graph

Titan Titan+K40

Data partitions (boxes) to fit in
memory (worst-case optimal)

3

6

1

4

7

2

5

1 2 3 4

3 4 5 6 5 7

Root

2

5 6

6 7 7

• Large, out of core
graphs

• Baseline is CPU boxed
multi-predicate join

• SSD and PCIe are not
the bottlenecks

Trie representation of edges

Internal
Representation

triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z

Near Memory Data Intensive Computing

• Move Analytics Primitives (RA) into the
memory system
▫ Custom low power GPU(Harmonica)
▫ Progress on Base compiler for in-memory

GPU

15

Kim (CS), Mukhopadhyay (ECE), Yalamanchili (ECE)
Collaborative Discussions with Intel Labs (N. Carter)

Processor

www.micron.com

• Technology Assessment

▫ Collaboration with Lexis Nexis

▫ Assess the impact of In-memory
acceleration for HPCC

A. Gavrilovska (CS), K. Schwan (CS), Yalamanchili (ECE)

http://www.istc-cc.cmu.edu/

Leveraging eBoxes and Compilers

Ada Gavrilovska

Georgia Tech

Enhancing the Edge via eBox-based Services

• Some results presented last year, also
supported by ISTC-EC in the past and
VMware

• Leverage high-density/low-power edge
boxes – eBoxes

• Infrastructure for app streaming,
caching, ephereral app delivery;

• Fully integrated in Android stack

• Outcome: 2x faster app delivery, 10x
faster app descovery, 70% reduction in
traffic; no performance impact

• AppFlux: Taming App Delivery
@TRIOS’15 (Bhardwaj, Agarwal,
Gavrilovska, Schwan); others in
submission/preparation

17

Compiler-Assisted Resource Management

• Goal: dynamic resource allocation to concurrent
workloads/workload components

• Problem: profile-based techniques limited
effectiveness (input-dependent requirements,
irregular applications…)

• Approach: LLVM-based compiler infrastructure to
instrument binary with “beacons”. Beacons
generate information based on dynamic input and
actual execution path taken. Intercepted by
resource managers (e.g., VM manager, VCPU or
thread scheduler, runtime-level scheduler…)

• Outcome: improved workload performance,
reduced performance variability, improved
resource use and management efficiency

• Compiler-assisted Load Balancing on Large
Clusters @PACT’15 (Deodhar, Parikh,
Gavrilovska, Pande); others in
submission/preparation

18

http://www.istc-cc.cmu.edu/

Automated Cloud Management
through Experimental

Measurements

Calton Pu
Professor and J.P. Imlay Chair in Software

Georgia Institute of Technology
Many PhD, MS, Undergraduate students and industry

collaborators

20

(0) Config. Design

(1) Code Generation / Deployment

System Under TestWorkload Drivers

Monitor

(3) Analyzer

Monitor

Monitor

Monitor

Evaluation / Analysis

(4) Reconfiguration

(2) Execution

Automated
Adaptation

Benchmark
specs

Experiment
Spec. Lang.

Adapt.
Cost

Elba: Automated Measurements

Automated,
Staging Cycle

21

Example Experiment: RUBBoS benchmark
based on Slashdot

 Sample configuration (1/2/1/2)

N-tier Benchmarks

• Experimental studies analyzing performance
data

▫ Production-scale experiments on “real data
centers”

▫ Collaboration with many industry partners

▫ Funding amplification from NSF

• Between 2013 and 2014: 13 papers

▫ IEEE CLOUD, SCC, ICDCS, IRI, Big Data Congress,
BigData, ACM TRIOS

▫ More than 40 papers (2005 – 2014)

22

Elba Experience

• Transform and generate scripts to automatically
create, manage and analyze experiments from
user-friendly specification files

• Develop open tools for automated experiments

○ Support a wide variety of evolving clouds,
benchmarks and performance monitors

○ Support flexible customization for many
configuration parameters

○ High resolution monitoring at low cost

23

Automating Experiments

Example: Very Short Bottlenecks (TRIOS’13)

P-I-T Response time at
50ms resolution

80ms

80ms

Cumulative request
response time distribution

long requests > 2%

Log scale

○ High resolution monitoring at low cost:
○ See VSBs at tens of milliseconds
○ A few percent monitoring overhead

25

1. Input

Experiment
Metadata (XML)

1. Input

Experiment
Metadata (XML)

2. Generate
Experiment
Scripts

2. Generate
Experiment
Scripts

4. Collect, extract,

load experimental
Data

4. Collect, extract,

load experimental
Data

5. Analyze Results
(Excel and
statistical tools)

5. Analyze Results
(Excel and
statistical tools)

Performance data
extraction & load

into database

Performance data
extraction & load

into database

3. Execute
experiment on
various clouds

3. Execute
experiment on
various clouds

Provision environment
Run benchmark
Setup, tear down

infrastructure

Provision environment
Run benchmark
Setup, tear down

infrastructure

User-provided
configuration

Scripts and generator
execution

User-provided
configuration

Scripts and generator
execution

Five Steps of Experimental Process

26

Emulab PR0bE Local Cluster

Experiments
(mins)*

91,728 4,641 2,925

Nodes Used (#) 6,048 1,092 4,516

Experiments (#) 14,112 714 450

*Experimental workloads range from 3 - 7 mins, each lasting about 20 - 30 min

Figures for Fall 2014 and Spring 2015; taking into account diversity of
work, including large-scale experimentation and infrastructure
development activities

Scale of Experiments

27

source set_elba_env.sh
mkdir -p <xsl:value-of
select=“//params[@name=‘RUBBOS_
TOP’]/@value”/>

source set_elba_env.sh
mkdir -p <xsl:value-of
select=“//params[@name=‘RUBBOS_
TOP’]/@value”/>

Code Template

<xtbl name=“Rubbos” version=“0.1”>
<params name=“OUTPUT_HOME”
value=“/opt/rubbos/output”/>
<params name=“RUBBOS_TOP”
value=“/mnt/rubbos”/>
</xtbl>

<xtbl name=“Rubbos” version=“0.1”>
<params name=“OUTPUT_HOME”
value=“/opt/rubbos/output”/>
<params name=“RUBBOS_TOP”
value=“/mnt/rubbos”/>
</xtbl>

XML Input

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

Intermediate Representations

Experiment-specific Scripts

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

1 template
line

Occurs in 5
templates

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

And 3 script files

Step 2: Script Transformation Example

28

Templates
(XSLT Lines)

Intermediate
(XML/XLST

Lines)

Final Scripts
(Shell Script Lines)

Core 900 400 1500

Deployment 3300 2000 2200

Benchmark 1400 500 500

The following figures correspond to deploying a 16-node, (4 clients;
2W\4A\1M\4D), RUBBoS application benchmark in the Emulab cluster.
Generated lines are an intermediate representation that enable
application, DBMS, OS and user-specific customizations to be applied.

Script Size of Experiment Runs

29

• Challenge: many performance monitors,
many configuration parameters, many
output formats

• Automated Approach:

○ use script transformation techniques to
annotate monitor output

○ generalize parser to consume schema
(from the annotations) and parse the
encapsulated data accordingly

Step 4: Extract/Load Monitor Results

• Some monitors can output simple, CSV-
formatted data files

30

Example 1: dstat

• Other monitors can produce highly variable and
difficult-to-parse output (syntax & semantics)

31

Example 2: sar

32

SAR Annotated OutputSAR Annotated Output

Parsing the following
version of SAR
output is reduced to
parsing a XML tree

Parsing the following
version of SAR
output is reduced to
parsing a XML tree

XML Tree ParserXML Tree Parser

Transforming Output of sar

• Research on big data graph algorithm
optimization

▫ K. Schwan, L. Liu

• Research on program optimization for
heterogeneous processors and memories

▫ S. Yalamanchili, A. Gavrilovska

• Research on automating experiments on large
scale benchmarks

▫ C. Pu

• Many publications, some tool releases, more
planned

33

Georgia Tech Highlights for ISTC-CC

