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• First part: yearly update on various projects

▫ Karsten Schwan, Ling Liu, Calton Pu, Sudha Yalamanchili, 
Greg Eisenhauer, Ada Gavrilovska, Matt Wolf

▫ Many students at PhD, MS, and undergraduate levels

• Second part: some details on automated management 
work (linking into Project Pulse)

• Highlights on work funded by ISTC-CC, or conforming 
to Intel open IP policy 

▫ Significant funding amplification from many industry 
collaborators and government funding agencies such as 
NSF and DoE
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Highlights of ISTC-CC (Georgia Tech)



GraphReduce Architecture (Schwan)
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SC 2015, GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems



Optimizations on GraphReduce

 Asynchronous execution and Spray (deep-copy) 
operation

 Dynamic frontier management

 Dynamic phase fusion and elimination

4



Gains by GraphReduce

GraphReduce’s speedup over Graphchi and X-Stream for out-of-memory graph inputs

Benefits of GraphReduce optimizations over memcpy time 
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Understanding Issue Correlations:
A Case Study of the Hadoop System

Scalable distributed systems are complex [Yuan et al., OSDI’14]   

Complicated System   

Issue Study   

Issue Pattern   

Error-prone   

+
Hard to Debug   

+

Better Software & Debugging Tools   

+

SOCC’15
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Our Findings  

• Half of the issues are independent

• The issue correlations are not complex as we expected

• One third of the issues have similar causes

• ......

Tools

Programming

Systems

• For memory issues, GC is still the No. 1 concern

• The statement “99.99% of data reliability” is challenged

• One third of programming issues relate to interfaces

• The logging system is error-prone

• ......
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Methodology Used in Our Study

Computation   

Storage   

…   

HDFS

HBase

HCatalog Mahout

MapReduce

Cascading

Hive Pig Flume

…   

Closed Issue   

Examined Issue   2180   2038   

2359   2340   

Sampling Period   ~6 years   5 years   

Sampling Rate

89.8%   

Issue   

Description   Patches   Follow-up 

Discussions   

Source Code

Analysis   

IssueID

Create/Commit Time   

Subcomponent   Type   Causes   

CorrelatedIssueID ……   

HPatchDB

Labeling    
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Insights from Analyzing Issues

2

Correlations Between Issues

Issues are independent; 33% of issues have similar causes, etc.

Correlations With System Characteristics

Systems, programming, tools

1

Tools

Programming

Systems



Big Data Systems Research (L. Liu)

• Optimizations for Fast Iterative Graph Computations

▫ GraphLego: 

 Resource Aware Graph Parallel Abstractions (Graph Cube 
and Slice, Strip, Dice) [ACM HPDC 2015]

▫ GraphTwist: 

 Approximation with utility-aware pruning [VLDB2015] 

 Edge pruning by slices: removing some insignificant edges

 Vertex pruning by cuts: removing some insignificant vertices

▫ GraphMap: 

 Workload aware Distributed Graph Processing Framework 
[IEEE SC2015]
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Shared Memory Optimization in Virt. Cloud

• Shared Memory Management Mechanisms
▫ MemPipe: 

 Shared memory channels for improving 
communication efficiency between co-resident VMs

 Incremental shared memory management

▫ MemFlex
 Shared memory based ballooning (inflate and 

deflate)
 Shared memory based optimization for memory 

page fault. 

▫ MemMon
 Memory working-set monitoring and estimate. 
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Poster by Qi Zhang (L. Liu)
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Optimizing Performance and Productivity 
on Heterogeneous Processors 

Sudhakar Yalamanchili
School of Electrical and Computer Engineering

Georgia Institute of Technology

Collaborators: H. Wu, M. Gupta,  C. Kersey, H. Kim, I. Saeed, J. 
Young, H. Wu, and LogicBlox Inc.  
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Accelerating Relational Processing

Finding cliques

 triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z.

 4cl(x,y,z,w)<-E(x,y),E(x,z),E(x,w),E(y,z),E(y,w),E(z,w), x<y<z<w.

Multi-predicate Join

H. Wu, D. Zinn, M. Aref, and S. Yalamanchili, “Multipredicate Join Algorithms for Accelerating Relational Graph Processing on 
GPUs,” Proceedings of ADMS, September 2014

Haicheng Wu and S.   Yalamanchili

SSD
Host 
Mem

GPU
Mem

LogicBlox Inc. 

Runtime

GPU Extensions 

at Georgia Tech

• Relational computations over out of core data sets

• Implementation of multi-predicate join for graph 
processing using GPUs

▫ 3-clique and 4 clique problems
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Out-of-Core Data Management
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• Large, out of core 
graphs

• Baseline is CPU boxed 
multi-predicate join

• SSD and PCIe are not 
the bottlenecks

Trie representation of edges

Internal 
Representation

triangle(x,y,z)<-E(x,y),E(y,z),E(x,z), x<y<z



Near Memory Data Intensive Computing

• Move Analytics Primitives (RA) into the 
memory system
▫ Custom low power GPU(Harmonica)
▫ Progress on Base compiler for in-memory 

GPU
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Kim (CS), Mukhopadhyay (ECE), Yalamanchili (ECE)
Collaborative Discussions with Intel Labs (N. Carter)

Processor

www.micron.com

• Technology Assessment

▫ Collaboration with Lexis Nexis

▫ Assess the impact of In-memory 
acceleration for HPCC

A. Gavrilovska (CS), K. Schwan (CS), Yalamanchili (ECE)
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Leveraging eBoxes and Compilers

Ada Gavrilovska

Georgia Tech



Enhancing the Edge via eBox-based Services

• Some results presented last year, also 
supported by ISTC-EC in the past and 
VMware

• Leverage high-density/low-power edge 
boxes – eBoxes

• Infrastructure for app streaming, 
caching, ephereral app delivery; 

• Fully integrated in Android stack

• Outcome: 2x faster app delivery, 10x 
faster app descovery, 70% reduction in 
traffic; no performance impact

• AppFlux: Taming App Delivery 
@TRIOS’15 (Bhardwaj, Agarwal, 
Gavrilovska, Schwan); others in 
submission/preparation
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Compiler-Assisted Resource Management

• Goal: dynamic resource allocation to concurrent 
workloads/workload components

• Problem: profile-based techniques limited 
effectiveness (input-dependent requirements, 
irregular applications…)

• Approach: LLVM-based compiler infrastructure to 
instrument binary with “beacons”. Beacons 
generate information based on dynamic input and 
actual execution path taken. Intercepted by 
resource managers (e.g., VM manager, VCPU or 
thread scheduler, runtime-level scheduler… )

• Outcome: improved workload performance, 
reduced performance variability, improved 
resource use and management efficiency

• Compiler-assisted Load Balancing on Large 
Clusters @PACT’15 (Deodhar, Parikh, 
Gavrilovska, Pande); others in 
submission/preparation
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Automated Cloud Management 
through Experimental 

Measurements

Calton Pu
Professor and J.P. Imlay Chair in Software

Georgia Institute of Technology
Many PhD, MS, Undergraduate students and industry 

collaborators
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(0) Config. Design

(1) Code Generation / Deployment

System Under TestWorkload Drivers

Monitor

(3) Analyzer

Monitor

Monitor

Monitor

Evaluation / Analysis

(4) Reconfiguration

(2) Execution

Automated
Adaptation

Benchmark 
specs

Experiment 
Spec. Lang.

Adapt.
Cost

Elba: Automated Measurements

Automated, 
Staging Cycle
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Example Experiment: RUBBoS benchmark 
based on Slashdot

 Sample configuration (1/2/1/2)

N-tier Benchmarks



• Experimental studies analyzing performance 
data 

▫ Production-scale experiments on “real data 
centers”

▫ Collaboration with many industry partners

▫ Funding amplification from NSF 

• Between 2013 and 2014: 13 papers 

▫ IEEE CLOUD, SCC, ICDCS, IRI, Big Data Congress, 
BigData, ACM TRIOS

▫ More than 40 papers (2005 – 2014)
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Elba Experience



• Transform and generate scripts to automatically 
create, manage and analyze experiments from 
user-friendly specification files

• Develop open tools for automated experiments

○ Support a wide variety of evolving clouds, 
benchmarks and performance monitors

○ Support flexible customization for many 
configuration parameters

○ High resolution monitoring at low cost
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Automating Experiments



Example: Very Short Bottlenecks (TRIOS’13)

P-I-T Response time at 
50ms resolution

80ms

80ms

Cumulative request 
response time distribution

long requests > 2% 

Log scale

○ High resolution monitoring at low cost: 
○ See VSBs at tens of milliseconds 
○ A few percent monitoring overhead
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1. Input 

Experiment 
Metadata (XML)

1. Input 

Experiment 
Metadata (XML)

2. Generate 
Experiment 
Scripts

2. Generate 
Experiment 
Scripts

4. Collect, extract, 

load experimental 
Data

4. Collect, extract, 

load experimental 
Data

5. Analyze Results 
(Excel and 
statistical tools)

5. Analyze Results 
(Excel and 
statistical tools)

Performance data
extraction & load 

into database

Performance data
extraction & load 

into database

3. Execute 
experiment on 
various clouds

3. Execute 
experiment on 
various clouds

Provision environment
Run benchmark
Setup, tear down 

infrastructure

Provision environment
Run benchmark
Setup, tear down 

infrastructure

User-provided 
configuration

Scripts and generator 
execution

User-provided 
configuration

Scripts and generator 
execution

Five Steps of Experimental Process
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Emulab PR0bE Local Cluster

Experiments 
(mins)*

91,728 4,641 2,925

Nodes Used (#) 6,048 1,092 4,516

Experiments (#) 14,112 714 450

*Experimental workloads range from 3 - 7 mins, each lasting about 20 - 30 min

Figures for Fall 2014 and Spring 2015; taking into account diversity of 
work, including large-scale experimentation and infrastructure 
development activities

Scale of Experiments
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source set_elba_env.sh
mkdir -p <xsl:value-of 
select=“//params[@name=‘RUBBOS_
TOP’]/@value”/>

source set_elba_env.sh
mkdir -p <xsl:value-of 
select=“//params[@name=‘RUBBOS_
TOP’]/@value”/>

Code Template

<xtbl name=“Rubbos” version=“0.1”>
<params name=“OUTPUT_HOME” 
value=“/opt/rubbos/output”/>
<params name=“RUBBOS_TOP”
value=“/mnt/rubbos”/>
</xtbl>

<xtbl name=“Rubbos” version=“0.1”>
<params name=“OUTPUT_HOME” 
value=“/opt/rubbos/output”/>
<params name=“RUBBOS_TOP”
value=“/mnt/rubbos”/>
</xtbl>

XML Input

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

Intermediate Representations

Experiment-specific Scripts

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

<file>
<name id=“Tomcat_deploy.sh” loc=“/home/scripts”/>
source set_elba_env.sh
mkdir -p /mnt/rubbos
</file>

1 template 
line

Occurs in 5 
templates

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

#/home/scripts/TOMCAT_DEPLOY.sh
source set_elba_env.sh
mkdir -p /mnt/rubbos

And 3 script files

Step 2: Script Transformation Example 
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Templates
(XSLT Lines)

Intermediate
(XML/XLST 

Lines)

Final Scripts
(Shell Script Lines)

Core 900 400 1500

Deployment 3300 2000 2200

Benchmark 1400 500 500

The following figures correspond to deploying a 16-node, (4 clients; 
2W\4A\1M\4D), RUBBoS application benchmark in the Emulab cluster. 
Generated lines are an intermediate representation that enable 
application, DBMS, OS and user-specific customizations to be applied.

Script Size of Experiment Runs 
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• Challenge: many performance monitors, 
many configuration parameters, many 
output formats

• Automated Approach:

○ use script transformation techniques to 
annotate monitor output

○ generalize parser to consume schema 
(from the annotations) and parse the 
encapsulated data accordingly

Step 4: Extract/Load Monitor Results



• Some monitors can output simple, CSV-
formatted data files
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Example 1: dstat



• Other monitors can produce highly variable and 
difficult-to-parse output (syntax & semantics)
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Example 2: sar
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SAR Annotated OutputSAR Annotated Output

Parsing the following 
version of SAR 
output is reduced to 
parsing a XML tree

Parsing the following 
version of SAR 
output is reduced to 
parsing a XML tree

XML Tree ParserXML Tree Parser

Transforming Output of sar



• Research on big data graph algorithm 
optimization

▫ K. Schwan, L. Liu

• Research on program optimization for 
heterogeneous processors and memories

▫ S. Yalamanchili, A. Gavrilovska

• Research on automating experiments on large 
scale benchmarks

▫ C. Pu

• Many publications, some tool releases, more 
planned
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Georgia Tech Highlights for ISTC-CC


