
http://www.istc-cc.cmu.edu/

Lightweight Processing on
Compressed Graphs

Guy Blelloch
Carnegie Mellon University

Joint work with Julian Shun and
Laxman Dhulipala

Large Graphs

Need to efficiently analyze these graphs
▫ Computational efficiency
▫ Space efficiency
▫ Programming efficiency

2
ISTC 2015

Breadth-first Search (BFS)

• Compute a BFS tree rooted at source r
containing all vertices reachable from r

3

r r

Frontier

• Can process each frontier in parallel
• Race conditions, load balancing ISTC 2015

BFS Abstractly: Frontier Based

1. Operate on a subset of vertices
2. Map computation over subset of edges in parallel
3. Return new subset of vertices
4. (Map computation over subset of vertices in parallel)
BFS visits every vertext once, but in general can visit many
times. Synchronous.

4

Can we build an abstraction for these types of algorithms?

Breadth-first search
Betweenness centrality
Connected components
Delta stepping

Bellman-Ford shortest paths
Graph eccentricity estimation
PageRank
Diameter estimation

ISTC 2015

Graph Processing Systems

• Existing: Pregel/Giraph, GraphLab, Pegasus,
Knowledge Discovery Toolbox, GraphChi, Parallel
BGL, and many others…

• Our system: Ligra - Lightweight graph processing
system for shared memory
▫ Efficient for “frontier-based” algorithms

• Probably no one-size fits all

5
ISTC 2015

• Costs
• Clould will enable wide use

AWS

ISTC 2015

6

Why the Cloud

Ligra

7

}

Shared memory Cilk Plus/OpenMP

Graph

VertexSubset

EdgeMap

VertexMap

• Operate on a subset of vertices
• Map computation over subset of edges in parallel

and return new subset of vertices
• (Map computation over subset of vertices in parallel)

ISTC 2015

Ligra Framework

8

0 4 6 8 VertexSubset

4

7

5
2

1

0

6

8

3

6 8 VertexSubset

bool f(v){
 data[v] = data[v] + 1;
 return (data[v] == 1);
}

4

0

6

8

VertexMap

ISTC 2015

Ligra Framework

9

4

7

5
2

1

0

6

8

3

0 4 6 8 VertexSubset

VertexSubset

bool update(u,v){…}

4

0

6

8

5 2 4 7 1

bool cond(v){…}

F

7

5
2

1

4

T

T

T

T

T EdgeMap

ISTC 2015

Why edge based?
• Parallel over the edges
• Sparse/dense (discussed later)

Breadth-first Search in Ligra

parents = {-1, …, -1}; //-1 indicates “unvisited”

procedure UPDATE(s, d):
 return compare_and_swap(parents[d], -1, s);

procedure COND(i):
 return parents[i] == -1; //checks if “unvisited”

procedure BFS(G, r):
 parents[r] = r;
 frontier = {r}; //VertexSubset
 while (size(frontier) > 0):
 frontier = EDGEMAP(G, frontier, UPDATE,
COND);

10

frontier

ISTC 2015

Actual BFS code in Ligra

11
ISTC 2015

EdgeMap: Sparse and Dense

12

Loop through outgoing edges
of frontier vertices in parallel

procedure EDGEMAP(G, frontier, Update, Cond):
 if (|frontier| + sum of out-degrees > threshold) then:
 return EDGEMAP_DENSE(G, frontier, Update, Cond);
 else:
 return EDGEMAP_SPARSE(G, frontier, Update, Cond);

Loop through incoming edges of
“unexplored” vertices (in parallel),
breaking early if possible

• First used by Beemer for BFS, but Ligra shows that useful
for a wide variety of algorithms

ISTC 2015

Frontier Plots

13
ISTC 2015

Benefit of Sparse/Dense Traversal

14

0
1
2
3
4
5
6
7
8
9

10

BFS Betweenness
Centrality

Connected
Components

Eccentricity
Estimation

40
-c

or
e

ru
nn

in
g

tim
e

(s
ec

on
ds

)

Twitter graph (41M vertices, 1.5B edges)

Sparse

Sparse/Den
se

ISTC 2015

Ligra Performance

• Ligra performance close to hand-written code

15

0

1

2

3

4

5

6

Page Rank (1
iteration)

BFS Connected
Components

R
u

n
n

in
g

ti
m

e
(s

ec
on

d
s)

Twitter graph (41M vertices, 1.5B edges)

Ligra (40-core machine)

Hand-written Cilk/OpenMP
(40-core machine)

HPGM 2015

Ligra Performance

• Ligra performance close to hand-written code
• Faster than distributed-memory on per-core basis
• Several shared-memory graph processing systems subsequently

developed: Galois [SOSP ‘13], X-stream [SOSP ‘13], PRISM
[SPAA ‘14], Polymer [PPoPP ‘15], Ringo [SIGMOD ‘15]

16

0

1

2

3

4

5

6

Page Rank (1
iteration)

BFS Connected
Components

R
u

n
n

in
g

ti
m

e
(s

ec
on

d
s)

Twitter graph (41M vertices, 1.5B edges)

GraphLab

Ligra (40-core machine)

Hand-written Cilk/OpenMP
(40-core machine)

(64 x 8-cores)

(64 x 32-cores)
(16 x 8-cores)

244 seconds

HPGM 2015

Large Graphs

17

6.6B edges

~20B edges (latest version)

~150B edges

• All fit in a Terabyte of memory; can fit on commodity
shared memory machine

• What if you don’t have that much RAM, or don’t want to
“rent” that much RAM?

R
un

ni
ng

 T
im

e

Memory Required

Available RAM

ISTC 2015

• Difference encoding (using variable-length codes)
for sorted edges per vertex

• Modify EdgeMap: parallel edge decoding on-the-fly
• All hidden from the user!

18

Ligra+: Adding Graph Compression

ISTC 2015

Graph Compression

• Compress the graph so that it uses less memory

19

0 4 5 11

2 7 9 16 0 1 6 9 12

...

...

Offsets

Edges

2 5 2 7 -1 -1 5 3 3 ...
Compressed

Edges

• Graph reordering to improve locality
• Goal: give neighbors IDs close to vertex ID
• BFS, DFS, METIS, our own separator-based

algorithm

• Sort edges
• First edge: Store difference between source and target vert
• Subsequent edges: store difference with previous edge

Vertex IDs 0 1 2 3

ISTC 2015

20

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
Space relative to Ligra

Ligra

Ligra+

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

40-core time relative to Ligra

• Cost of decoding on-the-fly?
• Memory bottleneck a bigger issue as graph

algorithms are memory-bound

ISTC 2015

Ligra+: Adding Graph Compression

Conclusion

• Ligra: lightweight graph processing framework for
shared-memory
▫ “frontier-based” algorithms
▫ Switches computation based on frontier size

• Ligra+: extension which incorporates graph
compression
▫ Reduces space usage and improves parallel performance

• Code: http://github.com/jshun/ligra

21
ISTC 2015

http://github.com/jshun/ligra

	Lightweight Processing on �Compressed Graphs
	Large Graphs
	Breadth-first Search (BFS)
	BFS Abstractly: Frontier Based
	Graph Processing Systems
	Why the Cloud
	Ligra
	Ligra Framework
	Ligra Framework
	Breadth-first Search in Ligra
	Actual BFS code in Ligra
	EdgeMap: Sparse and Dense
	Frontier Plots
	Benefit of Sparse/Dense Traversal
	Ligra Performance
	Ligra Performance
	Large Graphs
	Ligra+: Adding Graph Compression
	Graph Compression
	Slide Number 20
	Conclusion

