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Large Graphs 

Need to efficiently analyze these graphs 
▫ Computational efficiency 
▫ Space efficiency 
▫ Programming efficiency 
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Breadth-first Search (BFS) 

• Compute a BFS tree rooted at source r 
containing all vertices reachable from r 
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Frontier 

• Can process each frontier in parallel 
• Race conditions, load balancing ISTC 2015 



BFS Abstractly: Frontier Based 

1. Operate on a subset of vertices 
2. Map computation over subset of edges in parallel 
3. Return new subset of vertices  
4. (Map computation over subset of vertices in parallel) 
BFS visits every vertext once, but in general can visit many 
times.   Synchronous. 
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Can we build an abstraction for these types of algorithms? 

Breadth-first search 
Betweenness centrality 
Connected components 
Delta stepping 

Bellman-Ford shortest paths 
Graph eccentricity estimation 
PageRank 
Diameter estimation 
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Graph Processing Systems 

• Existing: Pregel/Giraph, GraphLab, Pegasus, 
Knowledge Discovery Toolbox, GraphChi, Parallel 
BGL, and many others… 
 

• Our system: Ligra - Lightweight graph processing 
system for shared memory 
▫ Efficient for “frontier-based” algorithms 
 

• Probably no one-size fits all 
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• Costs 
• Clould will enable wide use 

 
AWS 
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Why the Cloud 



Ligra 
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} 

Shared memory Cilk Plus/OpenMP 

Graph 

VertexSubset 

EdgeMap 

VertexMap 

• Operate on a subset of vertices 
• Map computation over subset of edges in parallel 

and return new subset of vertices 
• (Map computation over subset of vertices in parallel) 
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Ligra Framework 
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bool f(v){ 
    data[v] = data[v] + 1; 
    return (data[v] == 1); 
}  

4 

0 

6 

8 

VertexMap 

ISTC 2015 



Ligra Framework 
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VertexSubset 

bool update(u,v){…}  
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bool cond(v){…}  
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Why edge based? 
• Parallel over the edges 
• Sparse/dense (discussed later) 



Breadth-first Search in Ligra 

parents = {-1, …, -1};   //-1 indicates “unvisited” 
 
procedure UPDATE(s, d): 
 return compare_and_swap(parents[d], -1, s); 
 
procedure COND(i): 
 return parents[i] == -1;   //checks if “unvisited” 
 
procedure BFS(G, r): 
 parents[r] = r; 
 frontier = {r}; //VertexSubset 
 while (size(frontier) > 0): 
  frontier = EDGEMAP(G, frontier, UPDATE, 
COND); 
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frontier 
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Actual BFS code in Ligra 
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EdgeMap:  Sparse and Dense 
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Loop through outgoing edges 
of frontier vertices in parallel 

procedure EDGEMAP(G, frontier, Update, Cond): 
 if (|frontier| + sum of out-degrees > threshold) then: 
           return EDGEMAP_DENSE(G, frontier, Update, Cond); 
 else: 
           return EDGEMAP_SPARSE(G, frontier, Update, Cond); 

Loop through incoming edges of 
“unexplored” vertices (in parallel), 
breaking early if possible 

• First used by Beemer for BFS, but Ligra shows that useful 
for a wide variety of algorithms 
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Frontier Plots 
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Benefit of Sparse/Dense Traversal 
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Ligra Performance 

• Ligra performance close to hand-written code 
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Ligra Performance 

• Ligra performance close to hand-written code 
• Faster than distributed-memory on per-core basis  
• Several shared-memory graph processing systems subsequently 

developed: Galois [SOSP ‘13], X-stream [SOSP ‘13], PRISM 
[SPAA ‘14], Polymer [PPoPP ‘15], Ringo [SIGMOD ‘15] 
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Twitter graph (41M vertices, 1.5B edges) 

GraphLab

Ligra (40-core machine)
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(40-core machine)

(64 x 8-cores) 

(64 x 32-cores) 
(16 x 8-cores) 

244 seconds 
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Large Graphs 
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6.6B edges 

~20B edges (latest version) 

~150B edges 

• All fit in a Terabyte of memory; can fit on commodity 
shared memory machine 

• What if you don’t have that much RAM, or don’t want to 
“rent” that much RAM?  
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• Difference encoding (using variable-length codes) 
for sorted edges per vertex 

• Modify EdgeMap: parallel edge decoding on-the-fly 
• All hidden from the user! 
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Ligra+: Adding Graph Compression  
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Graph Compression 

• Compress the graph so that it uses less memory 
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Edges 

• Graph reordering to improve locality 
• Goal: give neighbors IDs close to vertex ID 
• BFS, DFS, METIS, our own separator-based 

algorithm 

• Sort edges 
• First edge: Store difference between source and target vert  
• Subsequent edges: store difference with previous edge 

 
 

Vertex IDs            0               1              2             3 
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• Cost of decoding on-the-fly? 
• Memory bottleneck a bigger issue as graph 

algorithms are memory-bound 
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Ligra+: Adding Graph Compression  



Conclusion 

• Ligra: lightweight graph processing framework for 
shared-memory 
▫ “frontier-based” algorithms 
▫ Switches computation based on frontier size 

• Ligra+: extension which incorporates graph 
compression 
▫ Reduces space usage and improves parallel performance 

• Code: http://github.com/jshun/ligra  
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http://github.com/jshun/ligra
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