PriorityMeister: Tail Latency QoS for Shared Networked Storage

Timothy Zhu*
Alexey Tumanov* Michael A. Kozuch†
Mor Harchol-Balter* Greg Ganger*

Carnegie Mellon University* Intel†
Problem statement

Goal: meet per-workload tail latency SLOs
Challenge – burstiness

Goal: meet per-workload tail latency SLOs
- Bursts cause queueing for workloads sharing the system
Challenge – end-to-end performance

- Workloads congest at different resources
- Latency is affected by each of the resources

Challenge – end-to-end performance

Frontends

Storage Servers

Network

Blue/Red congestion

Blue/Green congestion

Goal: meet per-workload tail latency SLOs

- Bursts cause queueing for workloads sharing the system
- Latency is affected by each of the resources
- Workloads congest at different resources
Solution – priority & rate limiting

• Priority
 • Purpose: reduce latency for workloads that care most
 • Simple mechanism, applies to storage & network

• Rate limiting
 • Purpose: prevents starvation of low priority workloads
 • Characterizes limits of workload behavior

Automatically assign priority & rate limits to meet SLOs
PM meets tail latency SLOs

PM accounts for workload behavior to better meet SLOs

Scheduling policies:
- PM: PriorityMeister
- Cake: reactive feedback-control
- EDF: earliest deadline first
- bySLO: prioritize by SLO
- ps: proportional sharing