# Fast Sampling Algorithms for Sparse Latent Variable Models

Manzil Zaheer, Amr Ahmed, Ha Loc Da, Jay-Yoon Lee, Sujith Ravi and Alexander J Smola

## Latent Variable Models

- Latent variable models have become a staple of statistical modelling: clustering, topic models, subspace estimation
- Diverse applications range from
  - Organising text documents (e.g. news) and images, to
  - Predicting user behavior (e.g. click patterns), to
  - Targeting ads
- Versatile tools for discovering the hidden thematic structure of objects in a human-understandable format

Global

### Share common structure

Global variables: themes that pervade the dataset



Local

### Implementation

- Global state typically fits into RAM
- Managing a massive local state
  - Out of core storage
  - Effective since the typical schedule for the Gibbs sampler iterates over the variables in a fixed order



Local variables: labels for data point

# **Inference Strategy**

- Inference is the process of estimating posterior distribution (or the most likely assignment) of all the latent variables
- Unfortunately, the task is intractable and even approximate methods can not be scaled easily due to the data dependencies introduced by global state.



- Leveraging sparsity and better data-structures
  - After gory math, for most Latent variable models the compute step involves drawing from the conditional:

 $p(z_{ij} = k | \text{rest}) \propto \underbrace{n_{ik} f_k(x_{ij})}_{\text{sparse}} + \underbrace{\alpha_k f_k(x_{ij})}_{\text{slowly-varving}}$ 

- Divide & Conquer! Brute force sampling for sparse term
- Smart tricks for almost constant time sampling like Alias Method or Fenwick tree for global dense slowly varying term
- Lock-free implementation
  - Sampling thread only reads from global, samples and pushes changes to circular buffers
  - Writing thread pulls from the circular buffers and modifies global

### Shard global parameters according to x



- MCMC sampling based method
- Our focus because:
- Leverage inherent sparsity present
- Use of smart data-structures for speeding up sampling
- Many works by Blei and Hoffman et.al.
- But updates are dense as it is an expectation over all labels
- Lots of pressure on CPU-RAM bandwidth

### Performance

#### Throughput

Single instance of AWS C4.8xlarge (36 vCPI, 60 GiB RAM)



#### Accuracy

Per-word log-likelihood after 1000 iteration of each method

| Dataset   | Tokens | Vanilla LDA | SparseLDA | aliasLDA | F++LDA |
|-----------|--------|-------------|-----------|----------|--------|
| ACM       | 12M    | -7.82       | -7.81     | -7.83    | -7.82  |
| NY Times  | 100M   | -7.91       | -7.91     | -7.92    | -7.91  |
| Reuters   | 105M   | -7.34       | -7.34     | -7.35    | -7.35  |
| PubMed    | 738M   | -6.96       | -6.92     | -6.96    | -6.95  |
| Wikipedia | 1,418M | -7.58       | -7.58     | -7.60    | -7.59  |

