
 Leveraging sparsity and better data-structures

After gory math, for most Latent variable models the
compute step involves drawing from the conditional:

Divide & Conquer! Brute force sampling for sparse term

Smart tricks for almost constant time sampling like Alias
Method or Fenwick tree for global dense slowly varying
term

 Inference is the process of estimating posterior distribution
(or the most likely assignment) of all the latent variables

 Unfortunately, the task is intractable and even approximate
methods can not be scaled easily due to the data
dependencies introduced by global state.

Fast Sampling Algorithms for Sparse Latent Variable Models
Manzil Zaheer, Amr Ahmed, Ha Loc Da, Jay-Yoon Lee, Sujith Ravi and Alexander J Smola

Latent Variable Models Implementation

 Latent variable models have become a staple of statistical
modelling: clustering, topic models, subspace estimation

 Diverse applications range from

Organising text documents (e.g. news) and images, to

Predicting user behavior (e.g. click patterns), to

Targeting ads

 Versatile tools for discovering the hidden thematic structure
of objects in a human-understandable format

 Share common structure

Global variables: themes that
pervade the dataset

Local variables: labels for
data point

Inference Strategy

 z

2. Compute
Global

Parameter

Storage

1. Load a
mini-batch

*. Optionally store local
parameters

3. Update

RAM

Gibbs Sampler Variational Inference
Cellular

Automata
Sampling Thread

1. Read off
statistics

2. Sample using
F-Tree/MH-Vose

Alias
3. Push updates

Global
Parameters

Sampling Thread
1. Read off
statistics

2. Sample using
F-Tree/MH-Vose

Alias
3. Push updates

Sampling Thread
1. Read off
statistics

2. Sample using
F-Tree/MH-Vose

Alias
3. Push updates

Writing Thread
1. Write change

in statistics
2. Optionally:
update data
structures

Writing Thread
1. Write change

in statistics
2. Optionally:
update data
structures

 Throughput

Single instance of AWS C4.8xlarge (36 vCPI, 60 GiB RAM)

Performance

 Lock-free implementation

Sampling thread only reads from global, samples and
pushes changes to circular buffers

Writing thread pulls from the circular buffers and modifies
global

Shard global parameters according to x

 Global state typically fits into RAM

 Managing a massive local state

Out of core storage

Effective since the typical schedule for the Gibbs sampler
iterates over the variables in a fixed order

LocalGlobal

 MCMC sampling based
method

 Our focus because:

 Leverage inherent sparsity
present

 Use of smart data-structures
for speeding up sampling

 Many works by Blei and
Hoffman et.al.

 But updates are dense as it
is an expectation over all
labels

 Lots of pressure on CPU-
RAM bandwidth

 Accuracy

Per-word log-likelihood after 1000 iteration of each method

Sharding

Read-
only

Write-
only

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

1 4 8 12 16 24

Sa
m

p
le

s/
se

c

Number of Sampling Threads

F++LDA

AliasLDA

SparseLDA

