
 Leveraging sparsity and better data-structures

After gory math, for most Latent variable models the 
compute step involves drawing from the conditional:

Divide & Conquer! Brute force sampling for sparse term

Smart tricks for almost constant time sampling like Alias 
Method or Fenwick tree for global dense slowly varying 
term

 Inference is the process of estimating posterior distribution 
(or the most likely assignment) of all the latent variables

 Unfortunately, the task is intractable and even approximate 
methods can not be scaled easily due to the data 
dependencies introduced by global state.
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Latent Variable Models Implementation

 Latent variable models have become a staple of statistical 
modelling: clustering, topic models, subspace estimation

 Diverse applications range from

Organising text documents (e.g. news) and images, to

Predicting user behavior (e.g. click patterns), to

Targeting ads

 Versatile tools for discovering the hidden thematic structure 
of objects in a human-understandable format 

 Share common structure 

Global variables: themes that
pervade the dataset

Local variables: labels for
data point
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 Throughput

Single instance of AWS C4.8xlarge (36 vCPI, 60 GiB RAM)

Performance

 Lock-free implementation

Sampling thread only reads from global, samples and 
pushes changes to circular buffers

Writing thread pulls from the circular buffers and modifies 
global

Shard global parameters according to x

 Global state typically fits into RAM

 Managing a massive local state

Out of core storage

Effective since the typical schedule for the Gibbs sampler 
iterates over the variables in a fixed order

LocalGlobal

 MCMC sampling based 
method

 Our focus because:

 Leverage inherent sparsity 
present

 Use of smart data-structures 
for speeding up sampling

 Many works by Blei and 
Hoffman et.al.

 But updates are dense as it 
is an expectation over all 
labels

 Lots of pressure on CPU-
RAM bandwidth

 Accuracy

Per-word log-likelihood after 1000 iteration of each method
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