
Wrangler: Predictable and Faster Jobs in Distributed Processing Systems using Machine Learning	

Neeraja	 J.	 Yadwadkar,	 Bharath	 Hariharan,	 Ganesh	 Ananthanarayan,	 Joseph	 Gonzalez,	 and	 Randy	 Katz	

Parallel	 Data	 analy+cs	 	
and	 stragglers	

Design	 Space	

Task3	

Task2	

Task1	

Job	

Straggler	 Wasted	 Time	 	
in	 detecHng	 stragglers	

Wasted	 	
Resources	

Mantri	 Dolly	

SpeculaHve	
ExecuHon	

Wrangler	

LATE	

2!

Evalua+on	

Utilization 	

Counters	
 Worker	

Worker
1	

Workers	

Scheduling	

Decisions	

Master	

Predictive	

Scheduler	

Confident
?	

Heartbeats 	

Model	

Builder	

Wrangler:	 Architecture	

Intui+on	

Job	
Submi?ed	

Map	 finished	
With	 	
Wrangler	

Map	 finished	
Without	 	
Wrangler	

Job	 finished	
With	 	
Wrangler	

Net	 Gain	

Map1	

Map2	

Map3	

Reduce	
Delay	 induced	 by	
Wrangler’s	 predic+ons	

Schedule	 without	
Wrangler	 Schedule	 with	 Wrangler	

Time	

Load-‐Balancing	

Approach: Binary Classification	

Input: Perf. counters at launch time	

Label: Yes/No	

Faster	 Job	 Comple+on	

!10$
0$

10$
20$
30$
40$
50$
60$
70$
80$
90$
100$

av
g$

75
p
$

80
p
$

85
p
$

90
p
$

95
p
$

96
p
$

97
p
$

98
p
$

99
p
$

99
.9
p
$

%
$R
ed

u
c8
o
n
$in
$J
o
b
$C
o
m
p
le
8
o
n
$T
im

e$

FB2009$(p=0.7)$

Few highly
loaded nodes

Model	 Builder	

FB2009	

Node 1	
 Node 2	
 Node 3	

FB2010	

CC_e	

Proposal	

Prediction Accuracy: 70-80%	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

75p	 80p	 85p	 90p	 95p	 97p	 98p	 99p	

%
 R

ed
uc

ti
on

 in
 J

ob

C
om

pl
et

io
n

T
im

e	

Wrangler	
 MTL	

Scalability!	

Train too many models separately	

Why? Heterogeneity across nodes
and tasks	

Prohibitively long data capture time	

Share data across nodes and workloads: 	

Multi Task Learning	

Due to the heterogeneity of nodes in a cluster,
the model builder trains a separate classifier for each
node. Note that to build a training set per node,
every node should have executed su�cient number of
tasks. Wrangler takes a few hours (approximately 2-
4 hours, depending on the workload) for this process.
Additionally, because each workload might be di↵erent,
these models are retrained for every new workload.
Thus, for every new workload that is executed on the
cluster, there is a 2-4 hour model building period. In
typical large production clusters with tens of thousands
of nodes, it might be a long time before a node collects
enough data to train the classifier.

Moreover, we may not always get enough data
for each node executing a workload. For example, in
our case, each task of a workload executed on a node
amounts to a training data point. Placement of input
data to tasks on nodes in a cluster is managed by
the underlying distributed file system [13]. To achieve
locality for faster reading of input data, sophisticated
locality-aware schedulers [7, 14] will try to assign tasks
to nodes already having the appropriate data. Based
on popularity of the data, number of tasks assigned to a
node could vary. Hence we may not get uniform number
of training data points, i.e., tasks executed, across all
the nodes in a cluster. There could be other reasons
behind skewed assignment of tasks to nodes [15]: even
when every map task has the same amount of data,
a task may take longer depending on the code path it
takes due to the data it processes. Hence, the node slots
will be busy due to such long running tasks. This could
lead to insu�cient number of tasks assigned to some
nodes.

These observations suggest that our training should
work even when very little data is available.

2.2 Need for multitask learning: Our proposal is
to leverage the correlations between the classifiers to
reduce this model building time. Concretely, a task
executing on a node will be a straggler because of a
combination of factors. Some of these factors involve
the properties of the node where the task is executing
(for instance, the node may be memory-constrained)
and some others involve particular requirements that
the tasks might have in terms of resources (for instance,
the task may require a lot of memory). These are
workload-related factors. When collecting data for a
new workload executing on a given node, one must be
able to use information about the workload collected
while it executed on other nodes, and information about
the node collected while it executed other workloads.

This kind of sharing of information is precisely the
motivation for the machine learning paradigm known

as multitask learning. In MTL, we are given a set of
learning tasks and we want to learn a classifier for each
one. Each task has its own training data set, although
typically all training points of all tasks live in the same
feature space. The tasks are related to each other,
and the goal of multitask learning is to leverage this
relationship to improve performance or generalization
of all the tasks.

In our formulation, each node-workload pair will
form a task. However, unlike typical MTL formulations,
our tasks are not simply correlated with each other;
they share a specific structure, clustering along node-
or workload-dependent axes. With this in mind, we
describe our MTL formulation below.

3 Proposed Formulation

Suppose there are T tasks, with the training set for the
t-th task denoted by Dt = {(xit, yit) : i = 1, . . . ,mt},
with xit 2 Rd. We begin with the formulation proposed
by Evgeniou, et al. [5]. Evgeniou, et al. write the
classifier wt for task t as:

(3.1) wt = w0 + vt

Here, w0 is a weight vector shared between all tasks and
captures information shared between tasks, and vt is a
vector that specifies how wt deviates from w0.

Learning then involves solving the following opti-
mization problem:

(3.2) min
w0,vt,b

= �0kw0k2 +
�1

T

TX

t=1

kvtk2 +
TX

t=1

mtX

i=1

⇠it

s.t

yit((w0 + vt)
Txit + b) � 1� ⇠it 8i, t

⇠it � 0 8i, t

This formulation shares information equally among
all the tasks. However, as argued before, our tasks
cluster into groups along various axes. To capture such
structure, we assume that the tasks are partitioned into
G groups. Denote the group of the t-th task by g(t).
Then we can write the classifier wt as:

(3.3) wt = w0 + vt +wg(t)

In general, there may be multiple ways of splitting
tasks into groups. In our application, one may split
tasks into groups based on workload or on nodes. To
formalize this, assume there are P ways of defining
groups. The p-th partitioning has Gp groups, and the
task t belongs to the gp(t) group under this partitioning.
Now, we also have a separate set of weight vectors for

Regularized MTL [KDD’04]:	

Our Formulation:	

Due to the heterogeneity of nodes in a cluster,
the model builder trains a separate classifier for each
node. Note that to build a training set per node,
every node should have executed su�cient number of
tasks. Wrangler takes a few hours (approximately 2-
4 hours, depending on the workload) for this process.
Additionally, because each workload might be di↵erent,
these models are retrained for every new workload.
Thus, for every new workload that is executed on the
cluster, there is a 2-4 hour model building period. In
typical large production clusters with tens of thousands
of nodes, it might be a long time before a node collects
enough data to train the classifier.

Moreover, we may not always get enough data
for each node executing a workload. For example, in
our case, each task of a workload executed on a node
amounts to a training data point. Placement of input
data to tasks on nodes in a cluster is managed by
the underlying distributed file system [13]. To achieve
locality for faster reading of input data, sophisticated
locality-aware schedulers [7, 14] will try to assign tasks
to nodes already having the appropriate data. Based
on popularity of the data, number of tasks assigned to a
node could vary. Hence we may not get uniform number
of training data points, i.e., tasks executed, across all
the nodes in a cluster. There could be other reasons
behind skewed assignment of tasks to nodes [15]: even
when every map task has the same amount of data,
a task may take longer depending on the code path it
takes due to the data it processes. Hence, the node slots
will be busy due to such long running tasks. This could
lead to insu�cient number of tasks assigned to some
nodes.

These observations suggest that our training should
work even when very little data is available.

2.2 Need for multitask learning: Our proposal is
to leverage the correlations between the classifiers to
reduce this model building time. Concretely, a task
executing on a node will be a straggler because of a
combination of factors. Some of these factors involve
the properties of the node where the task is executing
(for instance, the node may be memory-constrained)
and some others involve particular requirements that
the tasks might have in terms of resources (for instance,
the task may require a lot of memory). These are
workload-related factors. When collecting data for a
new workload executing on a given node, one must be
able to use information about the workload collected
while it executed on other nodes, and information about
the node collected while it executed other workloads.

This kind of sharing of information is precisely the
motivation for the machine learning paradigm known

as multitask learning. In MTL, we are given a set of
learning tasks and we want to learn a classifier for each
one. Each task has its own training data set, although
typically all training points of all tasks live in the same
feature space. The tasks are related to each other,
and the goal of multitask learning is to leverage this
relationship to improve performance or generalization
of all the tasks.

In our formulation, each node-workload pair will
form a task. However, unlike typical MTL formulations,
our tasks are not simply correlated with each other;
they share a specific structure, clustering along node-
or workload-dependent axes. With this in mind, we
describe our MTL formulation below.

3 Proposed Formulation

Suppose there are T tasks, with the training set for the
t-th task denoted by Dt = {(xit, yit) : i = 1, . . . ,mt},
with xit 2 Rd. We begin with the formulation proposed
by Evgeniou, et al. [5]. Evgeniou, et al. write the
classifier wt for task t as:

(3.1) wt = w0 + vt

Here, w0 is a weight vector shared between all tasks and
captures information shared between tasks, and vt is a
vector that specifies how wt deviates from w0.

Learning then involves solving the following opti-
mization problem:

(3.2) min
w0,vt,b

= �0kw0k2 +
�1

T

TX

t=1

kvtk2 +
TX

t=1

mtX

i=1

⇠it

s.t

yit((w0 + vt)
Txit + b) � 1� ⇠it 8i, t

⇠it � 0 8i, t

This formulation shares information equally among
all the tasks. However, as argued before, our tasks
cluster into groups along various axes. To capture such
structure, we assume that the tasks are partitioned into
G groups. Denote the group of the t-th task by g(t).
Then we can write the classifier wt as:

(3.3) wt = w0 + vt +wg(t)

In general, there may be multiple ways of splitting
tasks into groups. In our application, one may split
tasks into groups based on workload or on nodes. To
formalize this, assume there are P ways of defining
groups. The p-th partitioning has Gp groups, and the
task t belongs to the gp(t) group under this partitioning.
Now, we also have a separate set of weight vectors for

Common across all
the learning tasks	

Specific for a learning
tasks, t	

Common across the tasks in
a group, denoted by g	

Yadwadkar, Hariharan, Gonzalez and Katz

FB2009!

Node 1! Node 2! Node 3!

FB2010!

CC_e!

v1 �

�

�

�

�

�

�

�

�

v2 v3

v4 v5 v6

v7 v8 v9
w0

wfb09

wnode1

w1 = w0 + wnode1 + wfb09 + v1

Figure 2: In our context of straggler avoidance, the learning tasks naturally cluster into various groups in

multiple partitions. When a particular learning task, for example, node 1 and workload FB2009 (v1), has

limited training data available, we learn its weight vector, w1, by adding the weight vectors of groups it

belongs to from di↵erent partitions.

3. One group for each workload, consisting of all N learning tasks belonging to that
workload. This gives us one weight vector for each workload w

l

, l = 1, . . . , L, that
captures peculiarities of particular workloads.

4. Each task as its own group. Since there are N⇥L learning tasks, we get N⇥L weight
vectors, which we denote as v

t

, following the notation considered in Evgeniou and
Pontil (2004).

Thus, if we use all four partitions, the weight vector w
t

for a given workload l

t

and a
given node n

t

is:

w
t

= w0 + w
nt + w

lt + v
t

(22)

Figure 2 shows an example. The learning problem for the FB2009 workload running on
node 1 belongs to one group from each of the four partitions mentioned above: (1) the global
partition, denoted by the weight vector, w0, (2) the group corresponding to node 1 from
the node-wise partition, denoted by the weight vector w

node1 , (3) the group corresponding
to the FB2009 workload from the workload-wise partition, denoted by the weight vector
w

fb09, and (4) the group containing just this individual task, denoted by the weight vector
v1. Thus, we can learn the weight vector w1 as:

w1 = w0 + w
node1 + w

fb09 + v1 (23)

The corresponding training problem is then:

14

•  Underlying modeling task remains the same 	

•  Learning from other similar tasks	

•  Reduce training data capture time	

•  Improve accuracy by generalizing better	

50#

60#

70#

80#

90#

100#

1# 2# 5# 10# 20# 30# 40# 50# 60#

%
"A
cc
ur
ac
y"

%"Training"Data"

Wrangler# Our#formula8on#

Workload: FB2009	

Training	 Problem	

Multi-Task Learning for Straggler Avoiding Predictive Job Scheduling

or workload-dependent axes. In what follows, we first describe a general MTL formulation
that can capture such task grouping. We then detail how we apply this formulation to our
application of straggler avoidance.

4.1 Partitioning tasks into groups

Suppose there are T learning tasks, with the training set for the t-th task denoted by
D

t

= {(x
it

, y

it

) : i = 1, . . . ,m
t

}, with x
it

2 Rd. We begin with the formulation proposed
by Evgeniou and Pontil (2004). Evgeniou, et al. write the classifier w

t

for task t as:

w
t

= w0 + v
t

(2)

The intuition here is that w0 captures properties common to all tasks, while v
t

captures
how the individual tasks deviate from w0.

Learning then involves solving the following optimization problem:

min
w0,vt,b

�0kw0k2 +
�1

T

TX

t=1

kv
t

k2 +
TX

t=1

mtX

i=1

⇠

it

(3)

s.t y

it

⇣
(w0 + v

t

)T x
it

+ b

⌘
� 1 � ⇠

it

8i, t
⇠

it

� 0 8i, t

The above formulation assumes that all tasks are equally similar to each other. However,
as discussed above, in our application, this is not true: some tasks naturally cluster together.
Suppose that the tasks cluster into G non-overlapping groups, with the t-th task belonging
to the g(t)-th group. Note that while we derive our formulations for non-overlapping groups,
which is true in our application, the modification for overlapping groups is trivial. Using
the same intuition as Equation 2, we can write the classifier w

t

as:

w
t

= w0 + v
t

+ w
g(t) (4)

In general, there may be more than one way of dividing our tasks into groups. In our
application, one may split tasks into groups based on workload or based on nodes. We
call one particular way of dividing tasks into groups a partition. The p-th partition has G

p

groups, and the task t belongs to the g

p

(t) group under this partition. Now, we also have a
separate set of weight vectors for each partition p, and the weight vector of the g-th group
of the p-th partition is denoted by w

p,g

. Then, we can write the classifier w
t

as:

w
t

= w0 + v
t

+
PX

p=1

w
p,gp(t) (5)

Finally, note that w0 and v
t

can also be seen as weight vectors corresponding to trivial
partitions: w0 corresponds to the partition where all tasks belong to a single group, and
v
t

corresponds to the partition where each task is its own group. Thus, we can include w0

and v
t

in our partitions and write Equation 5 as:

w
t

=
PX

p=1

w
p,gp(t) (6)

9

