## **TetriSched: Space-time Soft Constraints in Heterogeneous Datacenters** Alexey Tumanov, Timothy Zhu, Jun Woo Park, Michael A. Kozuch\*, Mor Harchol-Balter, Greg Ganger Carnegie Mellon University, \*Intel Labs

# **Background and Motivation**



#### **Problem Statement**

- Heterogeneity results in many placement options
  - > Which resources/types to allocate (space)
  - > Run now or wait for better resource? (time)
- Existing schedulers don't leverage these options
  - > No interfaces to specify succinctly (or at all)

- Datacenters increasingly heterogeneous
- Datacenter workloads increasingly diverse
- User objectives differ, conflict, change
- Cluster schedulers map work to resources

# **Utility Functions**

- User-defined utility functions
  - > Completion time
  - > Availability
  - Queuing delay
- Scheduler-facing utility expressions
  - > "n Choose k" building blocks





#### No way to quantify the trade-offs

> Hard to efficiently solve : combinatorial solution space



- GPU: run 2 tasks on GPU nodes (rack1) if possible
- MPI: colocate 2 tasks on the same rack and complete ASAP
- Availability: place 2 tasks, each on a different rack

# **TetriSched System Model**



### **Real System Experiments**

- TetriSched: outperforms YARN in all cases
- Hard & None ≥ Yarn-Hard & Yarn-None



