
Gather-Scatter DRAM: Improving the Spatial Locality of Strided Access Patterns
Vivek Seshadri, Thomas Mullins, Amirali Boroumand, Onur Mutlu, Phillip B. Gibbons, Michael A. Kozuch, Todd. C. Mowry

Carnegie Mellon University, *Intel Labs

0

5

10

15

20

25

30

w/o Pref. Pref.
0

2

4

6

8

10

w/o Pref. Pref.

0

5

10

15

20

25

30

0

10

20

30

40

50

60

0.0

0.5

1.0

1.5

2.0

2.5

0

20

40

60

80

100

120

Th
ro

ug
hp

ut

(m
ill

io
ns

/s
ec

on
d)

En
er

gy

 (m
J f

or
 10

00
0 t

ra
ns

.)

Ex
ec

ut
io

n
Ti

m
e (

m
Se

c)

En
er

gy
 (m

J)

Ex
ec

ut
io

n
Ti

m
e (

m
Se

c)

Th
ro

ug
hp

ut

(m
ill

io
ns

/s
ec

on
d)

Transactions
(average across many workloads)

(varying number of R/W/RW fields)

Analytics
(average of two workloads)

(sum of 1 or 2 columns)

Hybrid Transactions/Analytics
(transactions = 1R+1W per record)

(analytics = sum of 1 column)

In-Memory
Database

Table

Field 1 Field 3
Record 1
Record 2
Record 3

Record n

Physical Data Layout Cache Line

Strided Access Pattern

1. High Latency
3. High Energy Consumption

2. High Bandwidth Consumption

data

cmd
addr

Cache Line DRAM Module

Fixed mapping

if cmd == READ or cmd == WRITE:
 morph = chip-ID AND pattern
 output = addr XOR morph
else:
 output = addr

data

cmd
addr

pattern

Per-chip Column Translation Logic

Output Column Address

Observation: Each row buffer has many useful values
Idea: Gather a cache line of useful values in one read

Column ID-based
Data Shuffling

Goal: Minimize
chip conflicts
for common

patterns

Cache Line

Stage 1

Stage 2

Stage 3
(stage ‘n’ is enabled only if nth least significant bit of column ID is set)

Gather/scatter many access patterns (e.g., any 2n
stride) with near-ideal efficiency and latency!

Minimal support from 1) on-chip caches,
2) instruction set architecture, and 3) software

	Slide Number 1

