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Transactions 
(average across many workloads) 

(varying number of R/W/RW fields) 

Analytics 
(average of two workloads) 

(sum of 1 or 2 columns) 

Hybrid Transactions/Analytics 
(transactions = 1R+1W per record) 

(analytics = sum of 1 column)  

In-Memory 
Database 

Table 

Field 1 Field 3 
Record 1 
Record 2 
Record 3 

Record n 

Physical Data Layout Cache Line 

Strided Access Pattern 

1. High Latency 
3. High Energy Consumption 

2. High Bandwidth Consumption 

data 

cmd 
addr 

Cache Line DRAM Module 

Fixed mapping 

if cmd == READ or cmd == WRITE: 
  morph = chip-ID AND pattern 
  output = addr XOR morph 
else: 
  output = addr 

data 

cmd 
addr 

pattern 

Per-chip Column Translation Logic 

Output Column Address 

Observation: Each row buffer has many useful values 
Idea: Gather a cache line of  useful values in one read 

Column ID-based 
Data Shuffling 

Goal: Minimize 
chip conflicts 
for common 

patterns 

Cache Line 

Stage 1 

Stage 2 

Stage 3 
(stage ‘n’ is enabled only if nth least significant bit of column ID is set) 

Gather/scatter many access patterns (e.g., any 2n 
stride) with near-ideal efficiency and latency! 

Minimal support from 1) on-chip caches,  
2) instruction set architecture, and 3) software 
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