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* Yahoo-web graph with 1.4 billion vertices requires 6.6

GB memory just to store its vertex values.
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 How to best extract multi-level parallelism in GPUs ?
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 GraphReduce adopts a hybrid model with a combination of both
vertex- and edge-centric model
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« User defined functions: gatherMap(), gatherReduce(), apply() and * Asynchronous execution and Spray (deep-copy) operation
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« User defined graph data types : VertexDataType and EdgeDataType * Dynamic phase fusion and elimination
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Benefits of GraphReduce optimizations over memcpy time
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