
GraphReduce: Processing Large-Scale Graphs on Accelerated-Based Systems
Shuaiwen Leon Song

Pacific Northwest National Lab

Graphs are Ubiquitous Motivation

• High Volume: Billions of edges and vertices carrying rich metadata

• High Velocity: 100s of billions photos, posts, tweets etc per month

• Fast graph analytics on large graphs

GraphReduce Architecture

Hybrid Programming ModelGAS Programming Model

Optimizations

Results Conclusions

Dipanjan Sengupta, Kapil Agarwal, Karsten Schwan
Georgia Institute of Technology

• Existing systems choose either vertex- or edge-centric GAS programming

model for graph execution

• Different processing phases have different types of parallelism and

memory access characteristics

• GraphReduce adopts a hybrid model with a combination of both

vertex- and edge-centric model

• Gather phase: each vertex

aggregates values associated

with its incoming edges and

source vertices

• Apply phase: each vertex

updates its state using the

gather result

• Scatter phase: each vertex

updates the state of every

outgoing edge.

• Why use GPUs ? – GPU-based 

frameworks are orders of magnitude faster

• Previous GPU-based graph processing 

doesn’t handle datasets that doesn’t fit in 

GPU memory
• Yahoo-web graph with 1.4 billion vertices requires 6.6 

GB memory just to store its vertex values. 

• Several challenges in large-scale graph 

processing
• How to partition the graph ? 

• How and when to move the partitions between host 

and GPU ?

• How to best extract multi-level parallelism in GPUs ?

• GraphReduce develops a high performance graph processing

framework for input datasets that may or may not fit in GPU memory

• Adopts a hybrid model of a combination of both edge- and vertex-

centric implementation of GAS programming model

• Leverages CUDA streams and hardware supports like hyper-Qs to

stream data in and out of GPU for high performance

• Optimizations like dynamic phase fusion/elimination and frontier

management further reduces data transfer time

• Outperforms CPU-based out-of-core graph processing frameworks

across a variety of real data sets achieving up to 79x speedup

Social Network Web Graph Advertising Infrastructure Science

• Asynchronous execution and Spray (deep-copy) operation

• Dynamic frontier management

• Dynamic phase fusion and elimination

• User defined functions: gatherMap(), gatherReduce(), apply() and

scatter()

• User defined graph data types : VertexDataType and EdgeDataType

GraphReduce’s speedup over Graphchi and X-Stream for out-of-memory graph inputs

Benefits of GraphReduce optimizations over memcpy time


