
Scaling File System Metadata Throughput using IndexFS
Kai Ren, Qing Zheng, Swapnil Patil, Garth Gibson

Overview Namespace Distribution
Problem: Existing distributed file systems do not provide a scalable
global shared namespace. Accesses to metadata and small files are a
performance bottleneck.
IndexFS: Middleware layered on existing distributed FSs
 Represent metadata in log-structured merge tree for speed
 Delay object store creates until file is non-trivial in size
 Bypass metadata server for large data access

Metadata
Cache

LevelDB

WAL SSTable

IndexFS Server

DFS Client Data path
(reusing DFS path)
read, write, …

Metadata path

…
…

DFS
IO Server

Metadata
Cache

LevelDB

WAL SSTable

IndexFS Server

DFS Client

U
se

r

IndexFS
client lib

Apps

DFS Client

create(logical_path),
mkdir(logical_dir), ..

Replication or RAID

D
FS

In
de

xF
S

LSM Tree and Column-Style Storage
Schema: cluster directory entries on disk
 key: <parent directory ID, partition ID, hash(file name)>
 value: file attributes, small files, pointer
Column-style Storage Format: for fast insertion
 Metadata / files append to non-LevelDB log files
 LevelDB only stores pointers to metadata and small files
 Delay data sorting and space cleaning for most metadata
Bulk-insertion: even faster insertion
 Use client-side write-back cache to build SSTable locally
 No RPC overhead per operation
 Assume clients only insert new tree, no conflict

operations between clients

key,path,attributes,small file
...

...

key,path,attributes,small file

...

key path, perm,

key path, perm,

key …

….

 Log Files

le
xi

co
gr

ap
hi

ca
l o

rd
er

no

rm
al

 c
om

pa
ct

ch
ro

no
lo

gi
ca

l o
rd

er

no
 (r

ar
e)

 c
om

pa
ct

io
n

 Index SSTable Files

Conclusions

 Newly created directory is randomly assigned to a server
 Binary splitting a directory partition using GIGA+ [FAST11]
 Want client caching of directory entries to mitigate hotspots
 Don’t want storms of cache invalidation callbacks
 Use leases with only expiration deadlines per directory
 Affect only rmdir, rename and chmod directory
 Lease duration: fixed duration (100ms / 1s) or depth based
 (3sec/depth) or rate based (r/(r+w) sec)

Scalability Test on PVFS: Replay Linked-In one-day HDFS traces
 Scale the number of server/client machines from 4 to 128
 Each machine has dual core, 8GB memory and 1GE NIC
 PVFS uses tmpfs as disk to counter use of BDB transactions

0

100

200

300

400

500

600

8 32 128

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

)

Number of servers

IndexFS+Fixed (100ms)
IndexFS+Fixed (1s)
IndexFS+Tree (3/depth)
IndexFS+Rate (r/(r+w))
PVFS+tmpfs
IndexFS+NoCache

 Sustains high metadata throughput for many servers by using
log-structured storage format and storm-free client caching

 Portable (e.g. Lustre, PVFS, HDFS and PanFS so far)

Mdtest on Lustre & HDFS: Three-phases HPC benchmark
 Create / Stat / Delete 32 million files in a shared directory
 Lustre on a 32-node LANL cluster, HDFS on a 128-node cluster

569 619
1,053

17.8 19
33

5

21

3

0

5

50

500

5,000

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

)

IndexFS-Lustre (Total, 32 servers)
IndexFS-Lustre (Per-server)

 449 960 832

3.5
 8 7

1

4
1

 0

 1

 10

 100

 1,000

 10,000

mknod stat remove

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

)

IndexFS-HDFS (Total, 128 servers)
IndexFS-HDFS (Per-server)
HDFS (Single server)

	Slide Number 1

