Scaling File System Metadata Throughput using IndexFS

Kai Ren, Qing Zheng, Swapnil Patil, Garth Gibson

.. .

S S]
-]
R

Overview

Problem: Existing distributed file systems do not provide a scalable
global shared namespace. Accesses to metadata and small files are a
performance bottleneck.

IndexFS: Middleware layered on existing distributed FSs

" Represent metadata in log-structured merge tree for speed

"= Delay object store creates until file is non-trivial in size

" Bypass metadata server for large data access

create(/ogical_path),

(N
pps Metadata path o kdir(logical_dir), .

- In_dexES . /
client lib / IndexFS Server \ < IndexFS Server \

) .
=1 Metadata Metadata %
\ DFS Client / Cache Cache :
©
<
Data path TR TR
(reusing DFS path) 215 CIE DFS Client
read, write, ... WAL SSTable WAL SSTabIe
_________ Iiéﬁﬁééti_o.j/r}%flf)"" N
4 @ N
o HE R EEEET o
D\...../ \.....leServer

LSM Tree and Column-Style Storage

Schema: cluster directory entries on disk

"= key: <parent directory ID, partition ID, hash(file name)>

= value: file attributes, small files, pointer

Column-style Storage Format: for fast insertion

= Metadata / files append to non-LevelDB log files

" |LevelDB only stores pointers to metadata and small files

" Delay data sorting and space cleaning for most metadata

Bulk-insertion: even faster insertion

= Use client-side write-back cache to build SSTable locally

= No RPC overhead per operation

= Assume clients only insert new tree, no conflict
operations between clients

Log Files
Index SSTable Files

g / key,path,attributes,small file c
O . key path, perm,=> SR
C_g % @ CEL
= Key path, perm,=> .8 =
Q o =, O
©® O key - ISE
S © . key,path,attributes,small file e
O E S —
82 5 8

Conclusions

= Sustains high metadata throughput for many servers by using
log-structured storage format and storm-free client caching
" Portable (e.g. Lustre, PVFS, HDFS and PanFS so far)

Carnegie Georgia
Mellon Tooh &

University v}

Intel Science & Technology
Center for Cloud Computing

Namespace Distribution

= Newly created directory is randomly assigned to a server
" Binary splitting a directory partition using GIGA+ [FAST11]
= Want client caching of directory entries to mitigate hotspots
= Don’t want storms of cache invalidation callbacks
= Use leases with only expiration deadlines per directory
= Affect only rmdir, rename and chmod directory
" |ease duration: fixed duration (100ms / 1s) or depth based
(3sec/depth) or rate based (r/(r+w) sec)

Scalability Test on PVFS: Replay Linked-In one-day HDFS traces
= Scale the number of server/client machines from 4 to 128

= Each machine has dual core, 8GB memory and 1GE NIC

" PVFS uses tmpfs as disk to counter use of BDB transactions

600
+IndexFS+Fixed (100ms)

500 4+ -+IndexFS+Fixed (1s)
=IndexFS+Tree (3/depth)

400 7 < |ndexFS+Rate (r/(r+w))

-+-PVFS+tmpfs
—|ndexFS+NoCache

N
o
o

o
o

Throughput (K ops/sec)
8
o
o

-

8 32
Number of servers

128

Mdtest on Lustre & HDFS: Three-phases HPC benchmark
= Create / Stat / Delete 32 million files in a shared directory
= | ustre on a 32-node LANL cluster, HDFS on a 128-node cluster

5000 4 ™IndexFS-Lustre (Total, 32 servers)
S IndexFS-Lustre (Per-server)
)
%))
= 519
© 500 1 g 69
@
<
S 50 33
2 17.8 21
S
2 5 > 3
L
|_
0
10,000

® IndexFS-HDFS (Total, 128 servers)
7 IndexFS-HDFS (Per-server)

= HDFS (Single server) 06 832

o
o
-

(@)
o

9,
L
)
o
< 100
2 10
< 4
-
@
= 1
|_

0

mknod Stat remove
('nte! university UC Berkeley. wasyinGTON

	Slide Number 1

