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Overview

Problem: Existing distributed file systems do not provide a scalable
global shared namespace. Accesses to metadata and small files are a
performance bottleneck.

IndexFS: Middleware layered on existing distributed FSs

" Represent metadata in log-structured merge tree for speed

"= Delay object store creates until file is non-trivial in size

" Bypass metadata server for large data access
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LSM Tree and Column-Style Storage

Schema: cluster directory entries on disk

"= key: <parent directory ID, partition ID, hash(file name)>

= value: file attributes, small files, pointer

Column-style Storage Format: for fast insertion

= Metadata / files append to non-LevelDB log files

" |LevelDB only stores pointers to metadata and small files

" Delay data sorting and space cleaning for most metadata

Bulk-insertion: even faster insertion

= Use client-side write-back cache to build SSTable locally

= No RPC overhead per operation

= Assume clients only insert new tree, no conflict
operations between clients
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Conclusions

= Sustains high metadata throughput for many servers by using
log-structured storage format and storm-free client caching
" Portable (e.g. Lustre, PVFS, HDFS and PanFS so far)
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Namespace Distribution

= Newly created directory is randomly assigned to a server
" Binary splitting a directory partition using GIGA+ [FAST11]
= Want client caching of directory entries to mitigate hotspots
= Don’t want storms of cache invalidation callbacks
= Use leases with only expiration deadlines per directory
= Affect only rmdir, rename and chmod directory
" |ease duration: fixed duration (100ms / 1s) or depth based
(3sec/depth) or rate based (r/(r+w) sec)

Scalability Test on PVFS: Replay Linked-In one-day HDFS traces
= Scale the number of server/client machines from 4 to 128

= Each machine has dual core, 8GB memory and 1GE NIC

" PVFS uses tmpfs as disk to counter use of BDB transactions
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Mdtest on Lustre & HDFS: Three-phases HPC benchmark
= Create / Stat / Delete 32 million files in a shared directory
= | ustre on a 32-node LANL cluster, HDFS on a 128-node cluster
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