
Scaling File System Metadata Throughput using IndexFS 
Kai Ren, Qing Zheng, Swapnil Patil, Garth Gibson 

Overview Namespace Distribution 
Problem: Existing distributed file systems do not provide a scalable 
global shared namespace. Accesses to metadata and small files are a 
performance bottleneck. 
IndexFS:  Middleware layered on existing distributed FSs 
 Represent metadata in log-structured merge tree for speed  
 Delay object store creates until file is non-trivial in size 
 Bypass metadata server for large data access  

Metadata 
Cache 

LevelDB 

WAL SSTable 

IndexFS Server 

DFS Client Data path  
(reusing DFS path) 
read, write, … 

Metadata path 

…
… 

DFS 
IO Server 

Metadata 
Cache 

LevelDB 

WAL SSTable 

IndexFS Server 

DFS Client 

U
se

r 

IndexFS 
client lib 

Apps 

DFS Client 

create(logical_path), 
mkdir(logical_dir), .. 

Replication or RAID  

D
FS

 

In
de

xF
S 

LSM Tree and Column-Style Storage 
Schema: cluster directory entries on disk 
  key: <parent directory ID, partition ID, hash(file name)>  
  value: file attributes, small files, pointer  
Column-style Storage Format: for fast insertion  
 Metadata / files append to non-LevelDB log files  
 LevelDB only stores pointers to metadata and small files  
 Delay data sorting and space cleaning for most metadata  
Bulk-insertion: even faster insertion 
 Use client-side write-back cache to build SSTable locally 
 No RPC overhead per operation 
 Assume clients only insert new tree, no conflict 

operations between clients 

key,path,attributes,small file 
... 

... 

key,path,attributes,small file 

... 

key path, perm, 

key path, perm, 

key … 

…. 

 Log Files 

le
xi

co
gr

ap
hi

ca
l o

rd
er

 
no

rm
al

 c
om

pa
ct

 

ch
ro

no
lo

gi
ca

l o
rd

er
 

no
 (r

ar
e)

 c
om

pa
ct

io
n 

 Index SSTable Files  

Conclusions 

 Newly created directory is randomly assigned to a server 
 Binary splitting a directory partition using GIGA+ [FAST11] 
 Want client caching of directory entries to mitigate hotspots 
   Don’t want storms of cache invalidation callbacks 
   Use leases with only expiration deadlines per directory 
   Affect only rmdir, rename and chmod directory 
   Lease duration: fixed duration (100ms / 1s) or depth based 
     (3sec/depth) or rate based (r/(r+w) sec) 

Scalability Test on PVFS: Replay Linked-In one-day HDFS traces 
 Scale the number of server/client machines from 4 to 128 
 Each machine has dual core, 8GB memory and 1GE NIC 
 PVFS uses tmpfs as disk to counter use of BDB transactions 

0

100

200

300

400

500

600

8 32 128

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

) 

Number of servers 

IndexFS+Fixed (100ms)
IndexFS+Fixed (1s)
IndexFS+Tree (3/depth)
IndexFS+Rate (r/(r+w))
PVFS+tmpfs
IndexFS+NoCache

 Sustains high metadata throughput for many servers by using 
log-structured storage format and storm-free client caching  

 Portable (e.g. Lustre, PVFS, HDFS and PanFS so far)  

Mdtest on Lustre & HDFS: Three-phases HPC benchmark 
 Create / Stat / Delete 32 million files in a shared directory 
 Lustre on a 32-node LANL cluster, HDFS on a 128-node cluster 

569 619 
1,053 

17.8 19 
33 

5 

21 

3 

0

5

50

500

5,000

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

) 

IndexFS-Lustre (Total, 32 servers)
IndexFS-Lustre (Per-server)

 449   960   832  

3.5 
 8   7  

1 

4 
1 

 0

 1

 10

 100

 1,000

 10,000

mknod stat remove

Th
ro

ug
hp

ut
 (K

 o
ps

/s
ec

) 

IndexFS-HDFS (Total, 128 servers)
IndexFS-HDFS (Per-server)
HDFS (Single server)


	Slide Number 1

