Mobile Traffic Compression Methods

Themistoklis Melissaris (Princeton), Margaret Martonosi (Princeton)

Growth of Mobile Traffic

- Mobile traffic grew 67% in 2014, overtaking other network traffic and is expected to increase nearly tenfold between 2014 and 2019
- Increasing desire for security in mobile apps/websites => encryption
 - 30% of Internet traffic is encrypted, expected to double by the end of 2016
 - But, encryption adds power/performance overhead.
 - And, Encrypted mobile traffic has high entropy: hard to compress.

Our Approach (Work in Progress)

- As mobile traffic continues to increase there is a need to
 - Reduce uplink/downlink traffic size and cost
 - Provide tools to automatically utilize compression
- Handle encrypted mobile traffic efficiently
- Balance compression with changing signal/battery states
 - Opportunity to save on power consuming data transmission and reception
 - Refrain from compressing when unnecessary

Mobile Traffic Measurements

Measurement Methodology

- Understanding the composition of mobile traffic is necessary
 - Images, video and audio appear in different compressed formats and offer low compression rate.
 - Scripts and JSON/text formats exhibit very high compression rate
 - Encrypted traffic leaves practically no room for compression
- Packet traces are collected by a traffic analyzer functioning as a proxy; a trusted certificate on the proxy is used to decrypt encrypted traffic. Non multimedia apps were used.

- Compression measurements in both a static and dynamic environment provide a lot of insight
 - Indicate the effect on performance, power efficiency, additional network latency
 - Demonstrate the dependency on signal strength and battery state

Choosing compression policies

Adaptive Compression Overview

- Compression decisions can be made using signal strength, battery state and mobile data information
 - Edge connectivity requires bringing data size to its bare minimum
 - Transmitting data while low on battery causes the phone's processor to transition from low to high energy state with additional energy footprint
 - Scripts and JSON/text can reduce their size significantly
 - Lossy image compression can be used to reduce data size

- Provide library for applications to automatically adjust compression to signal availability and battery level
- Guarantee that encryption follows compression

Conclusion

- Understanding mobile traffic better can lead to faster and more power efficient mobile communication
- Adaptive compression can balance communication with compression overhead to significantly reduce wasted energy consumption and improve performance

UNIVERSITY of WASHINGTON