
Towards Accurate and Fast Evaluation of Multi-Stage Log-Structured Designs
Hyeontaek Lim (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

Multi-Stage Log-Structured Design Evaluation
 Multiple stages of append-only logs to segregate fresh and old data
 Many system designs!
 LevelDB, RocksDB, BigTable, HBase, Cassandra, …

 Developers need tools for accurate and fast evaluation
Which design is best for this workload?
 How should the systems’ parameters be set?
 How sensitive is that choice to changes in workloads?

Solution: New Analytic Primitives

 Let 𝐾𝐾 be a set of unique keys, 𝑓𝑓𝑋𝑋 𝑘𝑘 be key 𝑘𝑘’s probability in each insert request
 Unique(𝑝𝑝): # of unique keys in 𝑝𝑝 inserts

 = 𝐾𝐾 − ∑ 1 − 𝑓𝑓𝑋𝑋 𝑘𝑘 𝑝𝑝
𝑘𝑘∈𝐾𝐾

 Unique-1(𝑢𝑢): # of inserts for 𝑢𝑢 unique keys
 Merge(𝑢𝑢, 𝑣𝑣): # of unique keys after

 merging 𝑢𝑢 and 𝑣𝑣 unique keys
 = Unique(Unique-1(𝑢𝑢) + Unique-1(𝑣𝑣))

Only 3.8% error

Example Design: LevelDB

 LevelDB-ana: Our LevelDB model
 0.01 sec/eval for 100 M unique keys (orders of magnitude faster)

 LevelDB-sim: Our lightweight C++ LevelDB simulator
 12 mins/eval for 100 M unique keys

 LevelDB-impl: Full LevelDB implementation
 2.9 hours/eval for 10 M unique keys

Requests Unique keys

Add

x x x

x x
x x

x x x x x x

Merge

Unique
Unique-1

count = 𝑢𝑢 count = 𝑣𝑣
count = Unique-1(𝑢𝑢)

count = Unique-1(𝑣𝑣)

count =
Merge(𝑢𝑢, 𝑣𝑣)

count = Unique-1(𝑢𝑢) + Unique-1(𝑣𝑣)

Level 0

Level 1

Level L-1

Level L

…

Key space

New data

Old data
Sorted String Tables (SSTables; ~2 MiB)

Memtable

Log

Unsorted data

 Unique, Unique-1, Merge
 Convert between # of requests and # of unique keys
 Consider redundancy in the workload for high accuracy

 Allow building system models (not shown)
to estimate performance metrics
 How often do table merges occur?
 How much data do they write?

Details of New Analytic Primitives

Problems of Prior Evaluation Methods
 Asymptotic analysis: Not very accurate
 E.g., O(log N) of insert cost often overestimates real cost

 Experiment: Slow and often hard to generalize
 E.g., Obtaining “12 k inserts/sec” may take hours to days

30.5% lower insert cost

 LevelDB-impl: Default level sizes (10X increase at each level)
 LevelDB-impl-opt: Optimized level sizes

Accuracy & Speed of Our Method

	Slide Number 1

