
Towards Accurate and Fast Evaluation of Multi-Stage Log-Structured Designs
Hyeontaek Lim (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

Multi-Stage Log-Structured Design Evaluation
 Multiple stages of append-only logs to segregate fresh and old data
 Many system designs!
 LevelDB, RocksDB, BigTable, HBase, Cassandra, …

 Developers need tools for accurate and fast evaluation
Which design is best for this workload?
 How should the systems’ parameters be set?
 How sensitive is that choice to changes in workloads?

Solution: New Analytic Primitives

 Let 𝐾𝐾 be a set of unique keys, 𝑓𝑓𝑋𝑋 𝑘𝑘 be key 𝑘𝑘’s probability in each insert request
 Unique(𝑝𝑝): # of unique keys in 𝑝𝑝 inserts

 = 𝐾𝐾 − ∑ 1 − 𝑓𝑓𝑋𝑋 𝑘𝑘 𝑝𝑝
𝑘𝑘∈𝐾𝐾

 Unique-1(𝑢𝑢): # of inserts for 𝑢𝑢 unique keys
 Merge(𝑢𝑢, 𝑣𝑣): # of unique keys after

 merging 𝑢𝑢 and 𝑣𝑣 unique keys
 = Unique(Unique-1(𝑢𝑢) + Unique-1(𝑣𝑣))

Only 3.8% error

Example Design: LevelDB

 LevelDB-ana: Our LevelDB model
 0.01 sec/eval for 100 M unique keys (orders of magnitude faster)

 LevelDB-sim: Our lightweight C++ LevelDB simulator
 12 mins/eval for 100 M unique keys

 LevelDB-impl: Full LevelDB implementation
 2.9 hours/eval for 10 M unique keys

Requests Unique keys

Add

x x x

x x
x x

x x x x x x

Merge

Unique
Unique-1

count = 𝑢𝑢 count = 𝑣𝑣
count = Unique-1(𝑢𝑢)

count = Unique-1(𝑣𝑣)

count =
Merge(𝑢𝑢, 𝑣𝑣)

count = Unique-1(𝑢𝑢) + Unique-1(𝑣𝑣)

Level 0

Level 1

Level L-1

Level L

…

Key space

New data

Old data
Sorted String Tables (SSTables; ~2 MiB)

Memtable

Log

Unsorted data

 Unique, Unique-1, Merge
 Convert between # of requests and # of unique keys
 Consider redundancy in the workload for high accuracy

 Allow building system models (not shown)
to estimate performance metrics
 How often do table merges occur?
 How much data do they write?

Details of New Analytic Primitives

Problems of Prior Evaluation Methods
 Asymptotic analysis: Not very accurate
 E.g., O(log N) of insert cost often overestimates real cost

 Experiment: Slow and often hard to generalize
 E.g., Obtaining “12 k inserts/sec” may take hours to days

30.5% lower insert cost

 LevelDB-impl: Default level sizes (10X increase at each level)
 LevelDB-impl-opt: Optimized level sizes

Accuracy & Speed of Our Method

	Slide Number 1

