Towards Accurate and Fast Evaluation of Multi-Stage Log-Structured Designs Hyeontaek Lim (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

Multi-Stage Log-Structured Design Evaluation

- Multiple stages of append-only logs to segregate fresh and old data
- Many system designs!
 - LevelDB, RocksDB, BigTable, HBase, Cassandra, ...
- Developers need tools for accurate and fast evaluation
 - Which design is best for this workload?
 - How should the systems' parameters be set?
 - How sensitive is that choice to changes in workloads?

Problems of Prior Evaluation Methods

- LevelDB-impl: Default level sizes (10X increase at each level)
- LevelDB-impl-opt: Optimized level sizes

Solution: New Analytic Primitives

- Asymptotic analysis: Not very accurate
 - E.g., O(log N) of insert cost often overestimates real cost
- Experiment: Slow and often hard to generalize
 - E.g., Obtaining "12 k inserts/sec" may take hours to days

Accuracy & Speed of Our Method

Unique, Unique⁻¹, Merge

- Convert between # of requests and # of unique keys
 - Consider redundancy in the workload for high accuracy
- Allow building system models (not shown) to estimate performance metrics
 - How often do table merges occur?
 - How much data do they write?

Example Design: LevelDB

LevelDB-ana: Our LevelDB model

- 0.01 sec/eval for 100 M unique keys (orders of magnitude faster)
- LevelDB-sim: Our lightweight C++ LevelDB simulator
 - 12 mins/eval for 100 M unique keys
- LevelDB-impl: Full LevelDB implementation
 - 2.9 hours/eval for 10 M unique keys

Details of New Analytic Primitives

• Unique(p): # of unique keys in p inserts

$$= |K| - \sum_{k \in K} (1 - f_X(k))$$

- Unique⁻¹(u): # of inserts for u unique keys
- Merge(u, v): # of unique keys after merging u and v unique keys = Unique(Unique⁻¹(u) + Unique⁻¹(v))

