
Backend Backend

A Heterogeneous Key-Value System with Fast Load Balancing
Xiaozhou Li, Raghav Sethi, Michael Freedman (Princeton), David Andersen (CMU), Michael Kaminsky (Intel Labs)

Goal: Cost-Effective Key-Value Store Cache-based Dynamic Load Balancing
• Build large scale SSD-based key-value storage

cluster using resources correctly-provisioned to
meet a service-level objective (SLO)

• Key challenge: Handle the highly-skewed and
rapidly changing real-world workloads with
efficient dynamic load balancing

• A small and fast frontend cache can provide good
load balance across the backends by only serving
the O(n log n) hottest items, where n is the total
number of backend nodes [SOCC’11]

• Problem: caching in the data path, introduces
system complexity and performance overhead

New Architecture for Efficient Cache-based Load Balancing with Content-based Routing

Look-aside On-path look-through NetKV
Client’s responsibilities handle cache misses nothing (transparent) encode keys in packet headers
Cache load 100% queries 100% queries cache hits (likely <30% queries)
Latency with cache miss three machine transits two machine transits one machine transit
Failure points switches load balancer, switches switches
Cache update involves cache, backends cache, backends cache, backends, switches
Cache update rate limit high high low (<10K/s in switch hardware)

Clients

Cache

Look-aside

Cache

On-path look-through

Load Balancer Cache

NetKV

OpenFlow Switches Controller

Clients Clients

• Move cache out of the data path by exploiting SDN and deeply optimized switch hardware.
• Clients encode keys in packet headers. OpenFlow switches maintain forwarding rules for all cached keys, and

route requests directly to the cache or backend nodes as appropriate based on content keys.

8x throughput
by adding one
cache node

Cache Controller Backends

switch rule update
Top-k <key, load> list

(periodic)

fetch request <key>

fetch reply <key, value>

update for consistency

(instant)
bursty hot <key, value>

Simulation Results Hybrid Cache Update
Primary goal: minimize unnecessary cache churn 100 backends, each can serve 200K request per second

Cache size: 5000

	Slide Number 1

