Architecting to Achieve a Billion Requests Per Second Throughput on a Single Key-Value Store Server Platform

Sheng Li¹, Hyeontaek Lim², Victor W. Lee¹, Jung Ho Ahn³, Anuj Kalia², Michael Kaminsky¹, David G. Andersen², Seongil O³, Sukhan Lee³, Pradeep Dubey¹
¹Intel Labs, ²Carnegie Mellon University, ³Seoul National University

Understand the Essence of Key-Value Store

In-memory key-value store (KVS)
- Critical datacenter infrastructure used by Google, Facebook, Amazon
- Examples: Memcached, MemC3, RAMCloud, EvCache, Redis
- Goals: High throughput, low latency, at scale

Two main research surges for better KVS platforms
- Special-purpose hardware (e.g., GPU, ARM+FPGA, etc), w/ stock software
- Software centric research, w/ stock hardware

However, thorough understanding of the essence of KVS is still lacking
- What it takes to exploit the true potential of modern platforms?
- What are the essential full-stack ingredients for high performance KVSs?
- What are the implications for future platforms?

Our methodology: full-stack system architecting and whole system balancing

Record-breaking Performance & Efficiency on Commodity Hardware

Exploring the huge KVS design space
- MICA (NSDI 2014) as optimization base
- Memcached and MemC3 as comparison baseline

Extensive full-stack characterization and optimization
- SW through HW, architectural balance & scaling
- Discover system balance:
 10M RPS from 2 cores + 10GbE
- Optimizations to achieve perfect scaling & best performance and energy efficiency:
 120M RPS on dual-socket Intel® Xeon™ E5-2697 v2, 128GB mem, 120GbE network

Another 10X Speedup to 1 Billion RPS on a Proposed Single KVS Server Platform

Proposed platform via detailed system simulation

Full-stack architecting to achieve Billion-level performance
- Optimized MICA running atop manycore-based, full-system architected, optimized, and balanced platform