
FLEXRR: SOLVING THE STRAGGLER PROBLEM FOR
ITERATIVE CONVERGENT PARALLEL ML

Aaron Harlap, Henggang Cui, Wei Dai, Jinliang Wei, Greg Ganger, Phillip B. Gibbons*, Garth Gibson, Eric Xing
Carnegie Mellon University, *Intel Labs

PARALLEL ML EFFECT OF STRAGGLERS

SLACK + RAPID REASSIGNMENT RAPID-REASSIGNMENT PROTOCOL

FLEXRR IMPLEMENTATION RESULTS

▪ Input (training) data spread among workers
› Workers compute adjustments to model params
› Synchronize progress occasionally
▪ BSP: barrier synch each clock (iteration)
▪ SSP: bounded number of clocks apart

▪ Stragglers are common in practice
› One worker slower than others
› Long-term: load imbalance
› Transient: short-term slow-down
▪ E.g., garbage collection, stop condition check,

resource contention, etc.

▪ Fast workers wait for slow workers
▪ BSP: wait at each barrier synch

› ... for slowest worker in each clock
▪ SSP: can mitigate short transient effects

› ... but not ones beyond the slack allowed

▪ Goal: never reach the slack boundary
▪ Approach

› Detect slowed workers quickly
› Shift some work to faster workers

▪ Each worker has designated group of helpers.
› Bounds overhead as scale increases

▪ Workers multicast when "nearly done"
▪ Workers compare messages to own progress
▪ If behind, re-assign some work

› Local state recomputed if necessary (TM)
▪ Once help begins, workers re-assign more work

▪ Challenges
› Detecting and reacting quick enough
› Limiting overhead
› Local State

▪ Integrated into LazyTable system
▪ Used with CF, TM, and MLR applications
▪ Need both SSP and Rapid-Reassignment

› Each solution on its own only partially solves the
straggler problem

▪ Ran on AWS, using 64 8 core machines

0 100 200 300 400
0

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
Ideal

Worker 1 Worker 2 Worker 3 Worker 4

Initial Work Assignments

Worker 1 Worker 2 Worker 3 Worker 4

Rebalanced Work Assignments

SlowFastOk

Ignore

Do assignment #2
 (green work)

Started Working

Do assignment #1
(red work)

(I need help)

▪ Even with no delays introduced(X=0), 35% speedup
▪ Ran on Dedicated Cluster of 16 8 core machines

› More controlled environment
▪ Big improvements when delays are introduced

› Emulating straggler scenarios of varied intensity
▪ Even for TM, where local state adds overhead,

FlexRR outperforms SSP and BSP RR

0 100 200 300 400
0

20

40

60

80

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

0 100 200 300 400
0

50

100

Injected transient delay intensity (%)

Ti
m

e
pe

r i
te

ra
tio

n
(s

ec
)

BSP
SSP
BSP RR
FlexRR
Ideal

0 100 200 300 400
0

2000

4000

6000

8000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
SSP
BSP RR
FlexRR
Ideal

0 100 200 300 400
0

1000

2000

3000

4000

5000

Injected transient delay intensity (%)

Ti
m

e
to

 C
on

ve
rg

en
ce

 (s
ec

)

BSP
FBP
BSP RR
FlexRR
Ideal

CF Experiment on AWS TM Experiment on AWS

TM Experiment on AWS

CF on Dedicated Cluster TM on Dedicated Cluster

