Cloudlet and User Mobility

- **Cloudlets** bring the Cloud closer to users
- Second-level data centers dispersed at the edge
- Low latency, high BW compared to distant Cloud
- Mobility: what if a user moves away from the current cloudlet?
- As long as network is connected, the application continues to work
- Interactive response will degrade as the network distance increases

User Mobility can eliminate the benefits of Cloudlets!

VM Handoff

- Live migration of the backend server across cloudlets
- Maintain network quality by seamlessly migrating the backend
- Different from data center live migration
 1. Optimized for minimizing handoff time (a.k.a migration time)
 2. Migration over WAN
 3. Computation used for handoff can be a bottleneck (cloudlet is much more limited than a cloud datacenter)

Completely different use case from live migration in data centers!

System Overview

- Minimize transfer size: efficiently find/encode modified regions for transfer across slow WAN
- Adaptive system: dynamic tuning of parameters to balance CPU and network transfer times
- Utilize VM overlays, Delta-encoding, Deduplication, Compression

Adaptive System

- **Motivation for dynamic adaptation**
 1. Unpredictable network (WAN) between cloudlets
 2. Network fluctuation throughput over time
 3. Varying workload (CPU utilization) at the cloudlet
- System bottlenecks: 1) Processing 2) Transfer time
 - More compression to reduce migration size → processing bound
 - Fast speed to maximize network utilization → transfer bound

 \[\text{Thru}_{\text{system}} = \min(\text{Thru}_{\text{processing}}, \text{Thru}_{\text{network}}) \]

- Estimate system throughput, which is determined by choice of algorithms
 - Idea: two algorithms differ in compressibility, but their relative performance will be similar across workloads
 - Use a profile created using a test workload at offline

VM Handoff is adaptive to both network BW and computation

Evaluation

- Performance comparison with datacenter live migration (10Mbps network, QEMU/KVM, 8GB disk and 1Gb memory)

<table>
<thead>
<tr>
<th>Application</th>
<th>Method</th>
<th>Handoff Time</th>
<th>VM downtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBJECT (Linux)</td>
<td>VM Handoff</td>
<td>1 min</td>
<td>5.50 s</td>
</tr>
<tr>
<td></td>
<td>KVM (no-share)</td>
<td>127 min</td>
<td>1.45 s</td>
</tr>
<tr>
<td></td>
<td>KVM (incremental)</td>
<td>12 min</td>
<td>1.54 s</td>
</tr>
<tr>
<td>MAR (Windows)</td>
<td>VM Handoff</td>
<td>4.2 min</td>
<td>12.6 s</td>
</tr>
<tr>
<td></td>
<td>KVM (no-share)</td>
<td>159 min</td>
<td>7.44 s</td>
</tr>
<tr>
<td></td>
<td>KVM (incremental)</td>
<td>52 min</td>
<td>7.63 s</td>
</tr>
</tbody>
</table>

- Comparison with static operating modes
 - **Fastest speed**: less compute/larger data → Network bound
 - **Highest comp**: small data/more process time → CPU bound

Order of magnitude improvement in migration time!