Adaptive VM Handoff Across Cloudlets

Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, Brandon Amos, Padmanabhan Pillai, Mahadev Satyanarayanan Carnegie Mellon University and †Intel Labs

Cloudlet and User Mobility

- Cloudlets bring the Cloud closer to users
 - Second-level data centers dispersed at the edge
 - Low latency, high BW compared to distant Cloud

- Mobility: what if a user moves away from the current cloudlet?
 - As long as network is connected, the application continues to work
 - Interactive response will degrade as the network distance increases

User Mobility can eliminate the benefits of Cloudlets!

VM Handoff

- Live migration of the backend server across cloudlets
- Maintain network quality by seamlessly migrating the backend
- Different from data center live migration
 - Optimized for minimizing handoff time (a.k.a migration time)
 - Migration over WAN
 - Computation used for handoff can be a bottleneck (cloudlet is much more limited than a cloud datacenter)

Completely different use case from live migration in data centers!

System Overview

- Minimize transfer size: efficiently find/encode modified regions for transfer across slow WAN
- Adaptive system: dynamic tuning of parameters to balance CPU and network transfer times
- Utilize VM overlays, Delta-encoding, Deduplication, Compression

Adaptive System

- Motivation for dynamic adaptation
 - Unpredictable network (WAN) between cloudlets
 - Network fluctuation throughput over time
 - Varying workload (CPU utilization) at the cloudlet
- System bottlenecks: 1) Processing 2) Transfer time More compression to reduce migration size \rightarrow processing bound Fast speed to maximize network utilization \rightarrow transfer bound

$$Thru_{system} = min(Thru_{processing}, Thru_{network})$$

- Estimate system throughput, which is determined by choice of algorithms
 - Idea: two algorithms differ in compressibility, but their relative performance will be similar across workloads
 - Use a profile created using a test workload at offline

VM Handoff is adaptive to both network BW and computation

Evaluation

Performance comparison with datacenter live migration (10Mbps network, QEMU/KVM, 8GB disk and 1Gb memory)

Application	Method	Handoff Time	VM downtime
OBJECT (Linux)	VM Handoff	1 min	5.50 s
	KVM (no-share)	127 min	1.45 s
	KVM (incremental)	12 min	1.54 s
MAR (Windows)	VM Handoff	4.2 min	12.6 s
	KVM (no-share)	159 min	7.44 s
	KVM (incremental)	52 min	7.63 s

- Comparison with static operating modes
 - *Fastest speed*: less compute/larger data → Network bound
 - *Highest comp*: small data/more process time → CPU bound

Order of magnitude improvement in migration time!

