
High Performance Packet Forwarding

with CuckooSwitch and Integration

with Intel DPDK

Dong Zhou, Bin Fan, Hyeontaek Lim, David G. Andersen,

Michael Kaminsky (Intel Labs)

Carnegie Mellon University

1

Ren Wang, Sameh Gobriel, Christian Maciocco, George Kennedy

Intel Labs

Venky Venkatesan, Bruce Richardson

CSIG

Agenda

• CuckooSwitch: a software switch that

• uses DPDK as IO engine

• can handle extremely large forwarding tables while

offering line-rate throughput

• Integration with Intel DPDK framework

• benefit: improve DPDK large table forwarding

performance

• current status

2

Challenges

• Requirements for network switches

 more lookups per second into larger tables

3

Why Not Existing Solutions?

• CAM/TCAM

• expensive

• power hungry

• very limited in size

• Hash tables in DRAM

• slow

• memory inefficient

• hash collisions

• pointer-swapping
4

Ports

RX Queues

Cores

TX Queues

Intel DPDK

high-throughput packet I/O to userspace

Optimized optimistic concurrent cuckoo hashing

high performance switch FIB

5

Hash Table

• Desired properties

• Fast

• High occupancy

• In-place update

6

• Lookup: check two buckets in parallel

Cuckoo Hashing[Pagh 01]

• Each key has two candidate buckets

• Assigned by hash1(key) and hash2(key)

• Stored in one of the candidate buckets

a

c

b

key x

hash1(x)

hash2(x)

1

2

3

5

4

6

7

0

• Insert: perform key

displacement recursively

hash2(b)

hash2(c)

7

• Lookup: check two buckets in parallel

Cuckoo Hashing[Pagh 01]

• Each key has two candidate buckets

• Assigned by hash1(key) and hash2(key)

• Stored in one of the candidate buckets

a

c

b

x

key x

hash1(x)

hash2(x)

1

2

3

5

4

6

7

0

• Insert: perform key

displacement recursively

hash2(b)

hash2(c) • 95% occupancy when set-

associativity is 4

8

Optimistic Concurrent Cuckoo

Hashing[NSDI 13]

• Higher concurrency

• single-writer/multi-readers by optimistic

concurrency control

9

Simplified

Multi-Reader/Single-Writer

• Keep a version number for each bucket

• Lookup

• v = bucket version before lookup

• v’ = bucket version after lookup

• Compare v with v’, retry if mismatch or v is odd

• Insert

• Increase versions of involved buckets for each displacement

10

System Optimizations

• We share the similar principles with DPDK,

especially:

• Batched hash table lookup with prefetching

Original Lookup

CPU

DRAM

hash1(key)

read b1 read returns

check b1

read b2 read returns

check b2
memory access

latency

Lookup throughput is very sensitive

to memory access latency

memory access

latency

12

Batched Lookup with Prefetching

CPU

DRAM

hash1(keys[1])

prefetch

b1[1]

hash1(keys[2]) hash1(keys[3])

prefetch

b1[2]

prefetch

b1[3]

hash1(keys[4])

prefetch

b1[4]

13

Batched Lookup with Prefetching

CPU

DRAM

prefetch

b1[1]

prefetch

returns

read

b1[1]

cache hit!

check

b1[1]

prefetch

b2[1]

14

• Prefetch one bucket after hash computation

• Interleave computation w/ memory accesses

• Better use available execution units and CPU load buffers

• 1.5 cache-line retrievals on average

Batched Lookup with Prefetching

15

Performance Evaluation

Experiment Setup
Cores

DRAM

DRAM

PCIe

Controller

Cores

PCIe

Controller

QPI

10GbE Ports

Intel Xeon E5-2680

17

Raw Packet I/O

Packet Size

(Bytes)

Throughput

(Mpps)

Throughput

(Gbps)
Bottleneck

64 92.22 61.97 PCIe B/W

18

Raw Packet I/O

Packet Size

(Bytes)

Throughput

(Mpps)

Throughput

(Gbps)
Bottleneck

64 92.22 61.97 PCIe B/W

128 66.24 78.43 PCIe B/W

192 47.17 80 Network B/W

256 36.23 80 Network B/W

19

End-to-end Benchmark

0

25

50

75

100

500K 1M 2M 4M 8M 16M 32M 64M 125M 250M 500M 1B

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of FIB entries

optimized cuckoo dense_hash_map

4.00GiB

8.00GiB

20

End-to-end Benchmark

0

25

50

75

100

500K 1M 2M 4M 8M 16M 32M 64M 125M 250M 500M 1B

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of FIB entries

optimized cuckoo dense_hash_map batched dense_hash_map4.00GiB

8.00GiB

16.32GiB

• thread-safe

• CRC32c

• not thread-safe

• h(x) = x

21

End-to-end Benchmark

0

25

50

75

100

2M 16M

T
h

ro
u

g
h

p
u

t
(M

p
p

s
)

of FIB entries

concurrent cuckoo hugepage memorder batching prefetching

22

Integration with Intel DPDK

Intel DPDK

• User mode packet processing

framework providing great IO

performance.

• Packet flow classification library

uses hashing to achieve line-rate

packet switching

• It is challenging to maintain line rate

with current default hashing designs

when number of flows grows large.

• CuckooSwitch hash table design

naturally aligns with DPDK

framework.

24

The benefit of DPDK with CuckooHashing

• CuckooHashing provides ~15X improvement on table efficiency.

25

15X

• Reduces memory bandwidth due to higher cache utilization

• Maintains throughput with large table (64M entries) comparing to the

current DPDK flow classification hashing.

Integration approach

• Include CuckooHashing as one option in DPDK flow

classification library.

• Working with CSIG closely

• Better address customers’ need

• Especially Telco industry such as AT&T.

26

Current status
• Licensing

• BSD licensing (thanks to ISTC )

• Comply with DPDK framework

• Unified APIs

• Code optimization and performance evaluation

• Functionality extension

• E.g., variable key-length hashing

• Architectural and system behavior characterization for
understanding and optimization

• Unit test and optimization for hashing functionalities

• Architectural characteristics of hashing behavior

27

Conclusion

CuckooSwitch

• Build on top of DPDK framework

• High performance IO framework

• Cuckoo hashing handles large number of entries

• System optimizations that aligns with DPDK

DPDK

28

• Flow classification library for switching

• Integrating CuckooHashing into DPDK benefits Intel and industry

• Continue to collaborate towards future communication centric

workload optimizations

backup

Intel DPDK framework

Where we can help with

Cuckoo Hashing

Latency

The average latency is ~ 35 microsecond

under maximum throughput

74

