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Background



• Scale 
• 100s Terabytes of data 
• 1000s of computers 
• 100 Billions of parameters 

• Reality 
• Faulty machines 
• Shared cluster 

• Performance 
• Front end serving machines 
• Real time response
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The Challenge



• Many models have O(1) blocks of O(n) terms 
(LDA, logistic regression, recommender 
systems) 

• More terms than what fits into RAM  
(personalized CTR, large inventory, action 
space) 

• Local model typically fits into RAM 
• Data needs many disks for distribution 
• Decouple data processing from aggregation 

• Optimize for the 80% of all ML problems
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Machine Learning Problems



client

server

• Clients have local view of parameters 
• P2P is infeasible since O(n2) connections 
• Synchronize with parameter server 

• Reconciliation protocol  
average parameters, lock variables 

• Synchronization schedule  
asynchronous, synchronous, episodic 

• Load distribution algorithm 
uniform distribution, fault tolerance, recovery
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General parallel algorithm template 

Smola & Narayanamurthy, 2010, VLDB 
Gonzalez et al., 2012, WSDM 
Shervashidze et al., 2013, WWW
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Communication pattern

client

server

client syncs to 
many masters

master serves 
many clients

put(keys,values,clock), get(keys,values,clock)
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Architecture

High-performance and multi-threaded linear algebra
operations are provide between parameters and local
training data.

There are two challenges. One is flexible and efficient
communication between workers and servers. A nature
thought is viewing it as a distribute key-value system. The
standard API that setting and getting a key, however, is
potentially inefficient. Because both key and value are
often basic types such as integers and float, the overhead
associated sending a single key value pair would be large.

Our insight comes from that a large portion of machine
learning algorithms represents parameters as mathemat-
ical objects, such as vectors, matrices or tensors. On a
logic time (or an iteration), typically a part of the object
is updated. For example, a segment of vector, or a row
of the matrix. From the key-value system perspective,
it is equivalence to synchronization a range of keys each
time. This batched communication pattern could reduces
the overhead and make it easy to do optimization. Further-
more, it allows us to build an efficient vector clocks which
supports the flexible consistency requirement of machine
learning tasks.

The other challenge comes from the fault tolerances.
We implemented the system. and did awesome experi-

ments.
We briefly compare parameter server with other general

purpose machine learning systems, more details will be
provided in Section 6. Graphlab is .... Table ?? compare
the features.

Furthermore, parameter server is highly efficient. Fig-
ure 1 compared the largest experiments public carried by
both general purpose and specific systems. parameter
server is of several magnitude order larger than general
system, and even larger than the specific systems.

2 Architecture

2.1 Overview
An instance of parameter server can simultaneously run
more than one different algorithms. In parameter server,
Nodes are grouped into a server group and several worker
groups, which are shown in Figure 2. A server node in the
server group maintain a partition of the globally shared
parameters. They communicate with each other to repli-
cate and/or to migrate parameters for reliability and scal-
ing. There is a server manager node maintaining a con-
sistent view of the metadata of the servers, such as the
liveness and the assignment of parameters. It may backup
its metadata in Paxos for fault tolerance, and communi-
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Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed.
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Figure 2: Architecture of parameter server.

cate with the cluster resource manager when adding or
removing server nodes.

Each worker group runs an application. A worker typ-
ically stores locally a portion of training data to com-
putes local statistics such as gradients. Workers commu-
nicate only with the server nodes, updating and retriev-
ing the shared parameters. There is a scheduler node for
each worker group. It assigns tasks to workers and mon-
itors their progress. If workers are added or removed,
it reschedules unfinished tasks. Similar to the server
manager, the scheduler may backup workers’ progress in
Paxos, and communicate with the cluster resource man-
ager.

The parameter server supports several independent pa-
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Key layout & recovery



• Caching 
• Store many (key,value) pairs 
• Linear scaling in clients & servers 
• Automatic key distribution 

• memcached 
• (key,value) servers 
• client access library distributes  

access patterns 
• randomized O(n) bandwidth 
• aggregate O(n) bandwidth 
• load balancing via hashing 
• no versioned writes / vector clocks 
• very expensive to iterate over all keys for a given server
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Consistent Hashing

m(key,M) = argmin
m02M

h(key,m0)



• Virtual servers 
• loadbalancing 
• multithreading 

• DHT 
• contiguous key range 

for clients 
• easy bulk sync 
• easy insertion of 

servers 
• Replication 

• Machines hold 
replicas 

• Easy fallback 
• Easy insertion / repair
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Keys arranged in a DHT

Server 3

Server 2

Server 1

key
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Keys arranged in a DHT

Server 3

Server 2

Server 1

key

Yes, we screwed up before! 
And everyone copied us!
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Key layout
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• Precopy server content to new candidate (3) 
• After precopy ended,  send log 
• For k virtual servers this causes O(k-2) delay 
• Consistency using vector clocks
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Recovery / server insertion
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Communication



• Convergence speed depends on 
communication efficiency 
• Sending (key,value) pairs is inefficient 

Send only values (cache key list) instead 
• Sending small gradients is inefficient 

Send only sufficiently large ones instead 
• Updating near-optimal values is inefficient 

Send only large violators of KKT conditions 
• Filter data before sending
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Message Compression



• Scheduling  
have controller decide when to send 
(this requires very smart controller) 

• Filtering 
have algorithm decide when to shut up 
• Gradient (only send large gradients) 
• KKT (only send variables violating KKT) 
• Randomized (sparse random vectors) 
• Quantization (reduce accuracy)

19

Filters
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Figure 10: time decomposition of a worker node.

We show the convergence results in Figure 8. As
can be seen, baseline-B outperforms baseline-A, because
block proxmial gradient method converges faster than L-
BFGS on this dataset. Parameter server further improves
baseline-B even by using the same algorithms, because of
the relaxed consistency model parameter server adopted.
The KKT filter significantly reduced the network traffic.
It skipped 93.4% of gradients should be sent, which are
shown in Figure 9. The bounded delay consistency allow
to start updating the next block without waiting the data
communication finished in previous blocks. With ⌧ = 4,
it affects the convergence speed little, but further hide the
communication cost.

The benefit of relaxed consistency model can be clearer
seen in Figure 10, which shows the time decomposition
of a worker nodes. As can be seen, System-A has around
32% idle time, while this number goes to 53% for system-
B due to the barrier placed in each block. However, the
parameter server reduces this cost under 2%. But also
note that parameter server uses more computational time

than system-B. The reason are two-fold. On one hand,
system-B optimizes its gradient calculating on this dataset
by careful data transformation. On the other hand, the
asynchronous updates of parameter server needs more it-
erations to achieve the same objective value as system-B.
However, due to the significant gain on reducing commu-
nication cost, parameter server reduces the total time into
half.

6 Related Works
There exist several general purpose distributed machine
learning systems. Mahout [6], based on Hadoop [1] and
MLI [28], based on Spark [30], adopt the iterative MapRe-
duce [15] framework. While Spark is substantially su-
perior to Hadoop MapReduce due to its preservation of
state and optimized execution strategy, both of these ap-
proaches use a synchronous iterative communication pat-
tern. This makes them vulnerable to nonuniform per-
formance distributions for iterative machine learning al-
gorithms, i.e. machines that might happen to be slow at
any given time. To overcome this limitation, distributed
GraphLab [22] asynchronously schedules communication
using a graph abstraction. It, however, lacks the elastic
scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover,
global variables synchronization is not a first-class prim-
itive. Of course, beyond these general frameworks, nu-
merous systems have been developed that target specific
applications, such as [3, 14, 25, 23, 29, 12, 16].

We found that many inference problems have a rather
restricted structure in terms of their parametrization where
considerable gains can be made by exploiting this design.
For instance, generalized linear models typically use a sin-
gle massive parameter vector, or topic models use an ar-
ray of sparse vectors. In general, many relevant large-
scale graphical models consist largely of a small num-
ber of plates, thus allowing for a repeated structure of a
small number of components which are shared between
observations and machines. This offers considerable effi-
ciencies by performing these operations in bulk and by
specializing synchronization primitives for the specific
datatypes.

7 Conclusion

References
[1] Apache hadoop, 2009. http://hadoop.apache.org/core/.
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• Sparse Vectors aka (key,value) pairs 
• Cache key list on server 
• Only need to send values 

• Sparse updates (via user defined filter) 
• Only send large updates 
• Compress sparse value list

20

Message Compression
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Message Aggregation on Server

Algorithm 1 Set range R of node i into t:
Require: S1, . . . ,Sn are the existing ranges

1: for S 2 {Si : Si \R 6= ;} do
2: if S ✓ R then
3: vci(S) t

4: else
5: a max(S0

,R0
) and b min(S1

,R1
)

6: split S into [S0
, a), [a, b), [b,S1

)

7: vci([a, b)) t

8: end if
9: end for

4.2 Message
Messages carry the data communicated between nodes. It
consists of a list of key-value pairs and the timestamp:

vc(R), (k1, v1), . . . , (kp, vp), 8i, ki 2 R

The keys may be a subset of all available keys within
range R. For the missing keys, we assign them the same
timestamp but with 0 or unchanged values.

There are several ways to reduce the size of a message.
First of all, the vector clock can only has the sender’s time.
For example, when a worker push data to a server, the
worker doesn’t necessary to send others time except for it-
self. Secondly, the keys a node sending to another may be
unchanged if the same range will be communicated again.
For example, when a node push keys to a server, it may
pull the same keys from the server. Many machine learn-
ing algorithms also iterates on the same training data with
keys fixed on each iteration. Then is desirable for the re-
ceiver to cache the keys. So that if the sender will send the
same keys again, it only need to send a signature of this
key lists.

Thirdly, even if a subset of keys will be send again,
which may due to the user-defined filter, we can still make
use of the cached keys of the receiver by padding 0 in the
according value. Then we compress the values. There are
several compression algorithms such as Snappy and Zlib
which are fast on both compression and decompression,
and also efficient to remove 0s.

4.3 Consistent Hashing
The basic idea comes from distributed hash tables [10,
26], where both key-value pairs and server nodes are in-
serted into the hash ring. Each node manages the key seg-
ment starting with its insertion point to the next point by

ever, we didn’t implement it yet, because in practice we find n and m
are reasonable small.

owned 
by S1

duplicated 
by S1

key ring

S2

S1

S3

S4

Figure 6: Server node layout

other nodes in the anticlockwise direction, which is called
the anticlockwise neighbor. In the example shown on Fig-
ure 6, the server nodes manages segments of the same
color. Different to performing key discovery and routing
as [18], we use a consistent hashing for assignment and
we store the mapping from key segments to nodes in a
server manager, which backups the data by Paxos [19], as
implemented in Zookeeper. Note that, to facilitate load-
balancing, a physical server node contains several virtual
server nodes, so they are inserted multiple times into the
ring.

4.4 Replica and Consistency

W1 S1 S2

1. push x 2. f(x) 3. send f(x)

4. ack5. ack

W1

S1 S2
1a. push x

2. f(x+y) 3. send f(x+y)

4. ack

5a. ack

W2
1b. push x

5b. ack

Figure 7:
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• Datatypes are eigen3 native 
• Dense vectors 
• Sparse vectors 

• Push(Header flag) 
• Pull(Header flag) 
Flag may specify 
• Value or delta update 
• key range 
• recipient (all server, all clients, particular 

node)

22

Messaging

Shared pointer. No copy on queue (by default)!
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Consistency models

0 1 2 3

0 1 2 3

0 1 2 3

(a) Sequential

(b) Eventual

(c) Bounded delay 

4

4

4

Figure 5: Example consistency model expressed by task
DAG dependency.

Sequential. In sequential consistency, all tasks are exe-
cuted one by one. The next task can be started only
if the previous one has finished.

Eventual. Eventual consistency is the opposite of se-
quential consistency. The parameter server will not
stall regardless of the availability of resources. For
instance, [27] describe such a system. However, this
is only recommendable whenever the underlying al-
gorithms are robust with regard to delays.

Bounded Delay. When a maximal delayed time ⌧ is set,
a new task will be blocked until all previous task ⌧

times ago have been finished. In other word, if we
use the iteration number as the (logic) time and set
⌧ = 2, then calling do_iteration(4) will be
blocked if any do_iteration(t) with t < 3 has
not been finished yet. Thus, if ⌧ = 0, we get the
sequential consistency model. While for an infinite
delay ⌧ = 1, we have the best-effect model [27].

The DAG can be traversed by either the callee or the
caller. For the former, the caller sends all tasks with their
dependencies to the callee, then the callee executes them
by its local DAG execution engine. In this way, the syn-
chronization is minimized between the caller and callee.
However, sometimes it is more convenient to use the lat-
ter. For instance, the scheduler may increase or decrease
the maximal delay according to the progress of the algo-
rithm. So the DAG is dynamic, then letting the caller tra-
verse the DAG simplify the programming.

3.5.2 User-defined Filters

The user-defined filters allow fine granularity control of
the data consistency within a task. It provides selective
synchronization on individual key-value pairs. One exam-
ple is the significantly modified filter, which only pushes
entries that have been changed more than by a significant
amount, e.g.

|wk � w

(synced)
k | > �.

That is, we send the key pair (k,wk) only if it is signif-
icantly changed since the last time it has been synchro-
nized. An intuitive choice is using a large � at the begin-
ning of the optimization, and then continuously decreas-
ing � when approaching a solution.

Another example, will be shown in Section 5.1, consid-
ers the optimal condition of the objective function. The
workers do not push local gradients which possibly would
not changed the according parameters to the servers.

4 Implementation
From the implementation aspect, it is more convenient to
view parameter server as a distributed key-value system.
A key-value pair may be an entry of the shared parame-
ters, where a key is often an integer or a string and a value
is often a number. It also may present a task with task
identity as the key and function augments or return results
as the value.

4.1 Vector Clock
To implement the task dependency, each key-value pair is
associated with a timestamp. Due to the potential complex
dependencies, timestamp is generated by vector clock.
Comparing to scalar clock, the vector clock tracks the
clock of individual nodes. Take the aggregation as an ex-
amples again, assume the server need to wait the value
pushed from all worker at an iteration. By vector clock,
the server is able to know the data from which workers
has been received. So if any worker join or leave, the
server only need to contact these workers, rather than ask
for restarting all pushes again.

A naive implementation of the vector clock is impracti-
cal. The number of nodes may go beyond thousand, main-
taining a thousand length vector for each key is expen-
sive. However, note that, by our design, each task asso-
ciates with a range of key-value pairs and they can share
the same timestamp. Therefore, we only need to have a
ranged vector clock.

Assume vci(k) is the time of key k of node i. Given
range R = [R0

,R1
), then the ranged vector clock

vci(R) = t means for any key k 2 R, vci(k) = t. Algo-
rithm 1 shows how to update a ranged vector clock. When
the range will be set is aligned with the existing ranges,
only the time is modified. Otherwise, we split the exist-
ing ranges. Each update increase at most two ranges. Let
n be the total number of unique ranges updated by tasks,
and m be the total number of server nodes, then the range
vector clock will generate at most nm ranges for a node.3

3Ranges can be also merged to reduce the number of fragment. How-

6

via task processing engine on client/controller



• Keep track of when we received an update 
from a client / server. 

• For c clients this means O(c) metadata 
This is impossible to store per key (Dynamo) 

• Very cheap and feasible for ranges 
• When inconsistent ranges, split segments 

[A,D] splits into [A,B], [B,C] and [C,D] when 
receiving message for [B,C] 

• This is infrequent + defragmentation

24

Vector Clocks for Ranges



Experiments



• Implementation on Parameter Server

26

Guinea pig - logistic regression

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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Figure 8: Convergence results of sparse logistic regres-
sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.

8

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
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ment data from its anticlockwise neighbors.
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where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
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We re-implemented the algorithm used by System-B on
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Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
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less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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• System A and B are production systems at a 
very large internet company …

27

Convergence speed

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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Figure 8: Convergence results of sparse logistic regres-
sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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500TB CTR data 
100B variables 
1000 machines



28

Scheduling Efficiency
0 5 10 15 20

10
0

10
1

10
2

#pass of data

d
a

ta
 p

u
sh

e
d

 (
%

)

Figure 9: Percent of gradients sent due to KKT filter.
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Figure 10: time decomposition of a worker node.

We show the convergence results in Figure 8. As
can be seen, baseline-B outperforms baseline-A, because
block proxmial gradient method converges faster than L-
BFGS on this dataset. Parameter server further improves
baseline-B even by using the same algorithms, because of
the relaxed consistency model parameter server adopted.
The KKT filter significantly reduced the network traffic.
It skipped 93.4% of gradients should be sent, which are
shown in Figure 9. The bounded delay consistency allow
to start updating the next block without waiting the data
communication finished in previous blocks. With ⌧ = 4,
it affects the convergence speed little, but further hide the
communication cost.

The benefit of relaxed consistency model can be clearer
seen in Figure 10, which shows the time decomposition
of a worker nodes. As can be seen, System-A has around
32% idle time, while this number goes to 53% for system-
B due to the barrier placed in each block. However, the
parameter server reduces this cost under 2%. But also
note that parameter server uses more computational time

than system-B. The reason are two-fold. On one hand,
system-B optimizes its gradient calculating on this dataset
by careful data transformation. On the other hand, the
asynchronous updates of parameter server needs more it-
erations to achieve the same objective value as system-B.
However, due to the significant gain on reducing commu-
nication cost, parameter server reduces the total time into
half.

6 Related Works
There exist several general purpose distributed machine
learning systems. Mahout [6], based on Hadoop [1] and
MLI [28], based on Spark [30], adopt the iterative MapRe-
duce [15] framework. While Spark is substantially su-
perior to Hadoop MapReduce due to its preservation of
state and optimized execution strategy, both of these ap-
proaches use a synchronous iterative communication pat-
tern. This makes them vulnerable to nonuniform per-
formance distributions for iterative machine learning al-
gorithms, i.e. machines that might happen to be slow at
any given time. To overcome this limitation, distributed
GraphLab [22] asynchronously schedules communication
using a graph abstraction. It, however, lacks the elastic
scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover,
global variables synchronization is not a first-class prim-
itive. Of course, beyond these general frameworks, nu-
merous systems have been developed that target specific
applications, such as [3, 14, 25, 23, 29, 12, 16].

We found that many inference problems have a rather
restricted structure in terms of their parametrization where
considerable gains can be made by exploiting this design.
For instance, generalized linear models typically use a sin-
gle massive parameter vector, or topic models use an ar-
ray of sparse vectors. In general, many relevant large-
scale graphical models consist largely of a small num-
ber of plates, thus allowing for a repeated structure of a
small number of components which are shared between
observations and machines. This offers considerable effi-
ciencies by performing these operations in bulk and by
specializing synchronization primitives for the specific
datatypes.

7 Conclusion

References
[1] Apache hadoop, 2009. http://hadoop.apache.org/core/.
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• Clients only act as data preprocessors 
• Shard keys over servers for balancing 
• Replication between machines on DHT 
• Servers perform simple updates 

• 15 servers, 40GBit network (dedicated)
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Distributed CountMin Sketch

Figure 8: Left: Distribution over worker log-likelihoods as a function of time for 1000 machines and 5 billion users.
Some of the low values are due to stragglers synchronizing slowly initially. Middle: the same distribution, stratified
by the number of iterations. Right: convergence (time in 1000s) using 1000 and 6000 machines on 500M users.

Algorithm 4 CountMin Sketch
Init: M [i, j] = 0 for i 2 {1, . . . n} and j 2 {1, . . . k}.
Insert(x)

1: for i = 1 to k do
2: M [i, hash(i, x)] M [i, hash(i, x)] + 1

Query(x)
1: return min {M [i, hash(i, x)] for 1  i  k}

We evaluate the time required to insert a streaming log
of pageviews into an approximate structure that can effi-
ciently track pageview counts for a large collection of web
pages. We use the Wikipedia (and other Wiki projects)
page view statistics as benchmark. Each entry is an unique
key of a webpage with the corresponding number of re-
quests served in a hour. From 12/2007 to 1/2014, there
are 300 billion entries for more than 100 million unique
keys. We run the parameter server with 90 virtual server
nodes on 15 machines of a research cluster (each one has
64 cores and is connected by a 40Gb Ethernet).

Algorithm: Sketching algorithms efficiently store
summaries of huge volumes of data so that approxi-
mate queries can be quickly answered. These algo-
rithms are particularly important in streaming applica-
tions where data and queries arrive in real-time. Some
of the highest-volume applications involve examples such
as Cloudflare’s DDoS-prevention service, which must an-
alyze page requests across its entire content delivery ser-
vice architecture to identify likely DDoS targets and at-
tackers. The volume of data logged in such applications
considerably exceeds the capacity of a single machine.
While a conventional approach might be to shard a work-
load across a key-value cluster such as Redis, these sys-
tems typically do not allow the user-defined aggregation
semantics needed to implement approximate aggregation.

Algorithm 4 gives a brief overview of the CountMin
sketch [11]. By design, the result of a query is an up-

per bound on the number of observed keys x. Splitting
keys into ranges automatically allows us to parallelize the
sketch. Unlike the two previous applications, the workers
simply dispatch updates to the appropriate servers.

Results: The system achieves very high insert rates:

Peak inserts per second 1.3 billion
Average inserts per second 1.1 billion
Peak network bandwidth per machine 4.37 GBit/s
Time to recover a failed node 0.8 second

It performs well for two reasons: First, bulk communi-
cation reduces the communication cost. Second, mes-
sage compression reduces the average (key,value) size to
around 50 bits. Importantly, when we terminated a server
node during the insertion, the parameter server was able
to recover the failed node within 1 second, making our
system well equipped for realtime.

6 Summary and Discussion
We described a parameter server framework to solve dis-
tributed machine learning problems. This framework is
easy to use: Globally shared parameters can be used as
local sparse vectors or matrices to perform linear algebra
operations with local training data. It is efficient: All com-
munication is asynchronous. Flexible consistentcy mod-
els are supported to balance the trade-off between system
efficiency and fast algorithm convergence rate. Further-
more, it provides elastic scalability and fault tolerance,
aiming for stable long term deployment. Finally, we show
experiments for several challenging tasks on real datasets
with billions of variables to demonstrate its efficiency. We
believe that this 3rd-generation parameter server is an im-
portant and useful building block for scalable machine
learning.
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M [h(k, j), j] M [h(k, j), j] + v for all j 2 {1, . . . d}

Limited by  
DRAM Latency



30

• For 1000 iterations do 
• For each document do 

• For each word in the document do 
• Resample topic for the word 
• Update local (document, topic) table 
• Generate local update message 

• Update local table 
• Lock local (word,topic) table 
• Update local (word,topic) table 
• Unlock local (word,topic) table 

• Synchronize local and global tables 

Gibbs Sampler for LDA



4B documents, 1M tokens, 60k cores, 2k topics
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1 machine = 10 cores 
1 core = 50 watt 

consumption of 3 Megawatt
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