

Towards Wearable Cognitive Assistance

Mahadev Satyanarayanan School of Computer Science Carnegie Mellon University

Joint work with: Brandon Amos, Zhuo Chen, Benjamin Gilbert, Kiryong Ha, Jan Harkes, Martial Hebert, Wenlu Hu, Roberta Klatzky, Padmanabhan Pillai (Intel), Dan Siewiorek

http://www.istc-cc.cmu.edu/

1

A Unique Moment in Time

Convergence of Advances in 3 Independent Arenas

Watson (2011)

Face Recognition

"DeepFace: Closing the Gap to Human-Level Performance in Face Verification"

Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, Lior Wolf Proceedings of CVPR 2014 (IEEE Conference on Computer Vision and Pattern Recognition), Columbus, OH, June 2014

Natural Language Translation

Convergence: Wearable Cognitive Assistance

Entirely new genre of applications

Combine mobile and cloud with *real-time cognitive engines*

scene analysis, object/person recognition, speech recognition, language translation, planning, navigation, question-answering technology, voice synthesis, ...

Seamlessly integrated into inner loop of human perception and cognition

Why?

(more use cases later in talk)

Cognitive decline

- traumatic brain injury (accidents, war, sports injuries, ...)
- Alzheimer's disease
- survivors of stroke
- mild cognitive impairment
- ...

Inability to

- recognize people
- recognize objects
- interpret text and signs
- remember daily routines
- ...

Just in the United States

- over 20M Americans affected
- heavy burden on caregivers
- est. savings of \$1B+ annually by 1-month delay in nursing home admission

Extrapolate to global scale!

Glass Offers Hope

Glass-based assistive system

- real-time scene interpretation (vision and other sensors)
- offer helpful (audio) hints to user when appropriate

Crisp Interactive Response

Humans are amazingly fast, accurate and robust

- face detection under hostile conditions < 700 ms (low lighting, distorted optics)
- face recognition 370 ms 620 ms
- is this sound from a human?
 4 ms
- VR head tracking < 16 ms

(2004 NASA study, Ellis et al)

Not enough to just match humans

- we need to be "superhuman"
- allow enough time budget for additional cognitive processing

Safe goal: *E2E Latency < "few tens of ms"*

Conquering Latency

×

Choice 1: standalone apps

- Choice 2: offload to cloud
 - RTT is too long
 - optimal Amazon site ~74 ms

Choice 3: offload to cloudlet

- "data center in a box"
- "bring cloud closer"
- 1-hop Wi-Fi access
- typical RTT < 10 ms

	OCK application on Glass		
Metric	Standalone	With Offload	
Per-image speed (s)	10.49 (0.23)	1.28 (0.12)	
Per-image energy (J)	12.84(0.36)	1.14 (0.11)	

	Typical	Server	Typical Handheld or Wearable		
Year	Processor	Speed	Device	Speed	
1997	Pentium [®] II	$266 \mathrm{~MHz}$	Palm Pilot	$16 \mathrm{~MHz}$	
2002	$\mathrm{Itanium}^{\mathbb{R}}$	$1~\mathrm{GHz}$	Blackberry 5810	$133 \mathrm{~MHz}$	
2007	$\frac{\text{Intel}^{\mathbb{B}}}{\text{Core}^{\text{TM}}}$	9.6 GHz (4 cores)	Apple iPhone	$412 \mathrm{~MHz}$	
2011	Intel [®] Xeon [®] X5	32 GHz (2x6 cores)	Samsung Galaxy S2	2.4 GHz (2 cores)	
2013	Intel [®] Xeon [®] E5	64 GHz (2x12 cores)	Samsung Galaxy S4	6.4 GHz (4 cores)	
			Google Glass OMAP 4430	2.4 GHz (2 cores)	

On-body Source: adapted from [Flinn 2013]

Nearby Cloudlet

Glass Dev

Distant

Resources t in Cloud

Bring the Cloud Closer

Create a Small Cloudlet Nearby

Micro Data Centers Exist Today

Used as private clouds today

Need to be re-purposed as cloudlets i.e., as "2nd-tier infrastructure"

Loosely Coupled Architecture

Many human tasks involve distinct cognitive capabilities

- e.g. human conversation
- multiple independent sensor channels analyzed in parallel, combined in real-time
- strong evidence that brains use coarse-grain parallelism

Leverage off-the-shelf building blocks

- face / object recognition, OCR, speech-to-text, language translation ...
- use these to catalyze our new class of applications

Diverse programming languages, optimizing compilers, OSes

Gabriel Architecture

Ha et al, "Towards Wearable Cognitive Assistance", MobiSys 2014

Don't Transmit Hopeless Frames

Many Results in the Paper

(just a sampling here)

Cloudlets are essential

E.g. Face recognition (cloudlet versus Amazon):

Application	Cloudlet	Cloud		
	(Joule/query)	(Joule/query)		
Face	0.48	0.82		
AR	0.19	0.32		
OCR(open)	2.01	3.09		
OCR(comm)	1.77	2.41		

Figure 14: Energy Consumption on Google Glass

Performance Summary

(many more results in paper)

Cognitivo Engino	Response time (ms)				Glass Life	
Cognitive Engine	1%	10%	50%	90%	99%	GIASS LITE
Face Recognition	196	389	659	929	1175	
Object (MOPED)	877	962	1207	1647	2118	
Object (STF)	4202	4371	4609	5055	5684	
OCR (Open)	29	41	87	147	511	~1 hour
OCR (Comm)	394	435	522	653	1021	
Motion Classifier	126	152	199	260	649	
Augmented Reality	48	72	126	192	498	

- 1. Today's cognitive engines are slow (none of medians are "few tens of ms")
- 2. Huge inter-frame variability (content-specific)
- 3. Faster engines/frames not hurt by slower ones (token-based flow control)

Beyond Cognitive Disabilities

Task-specific Assistance

Example: cooking

passive recipe display

versus active guidance

"Wait, the oil is not hot enough"

Inspiration: GPS Navigation Systems

Turn by turn guidance

- Ability to detect and recover
- Minimally distracting to user

Uses only one type of sensor: location from GPS

Can we generalize this metaphor?

Many Use Cases ...

Assembly instructions

Medical training

Industrial troubleshooting

Strengthening willpower

Prediction

Wearable Cognitive Assistance will be the "killer app" of mobile computing in the next decade

(and we will not get there without cloudlets)

Thank You!