
Some New Ideas in Memory System
Design for Data-Intensive Computing

Onur Mutlu
onur@cmu.edu

September 4, 2014
ISTC-CC Retreat

mailto:onur@cmu.edu

Some New Ideas (This Year)
 Specialization

 Heterogeneous Reliability Memory [DSN 2014]
 Heterogeneous Block Architecture [ICCD 2014]

 Persistent Memory
 Loose Ordering Consistency for Persistent Memory [ICCD 2014]
 Transparent Consistency for Persistent/Hybrid Memory [in progress]

 Memory Reliability/Security
 Row Hammer Problem in DRAM [ISCA 2014]
 Neighbor-Cell Assisted Error Correction in Flash [SIGMETRICS 2014]
 Error Mitigation for Intermittent DRAM Failures [SIGMETRICS 2014]

 Memory Performance
 The Dirty-Block Index [ISCA 2014]
 DRAM Refresh-Access Parallelization [HPCA 2014]
 The Blacklisting Memory Scheduler [ICCD 2014]
 Exploiting Read-Write Disparity in Caches [HPCA 2014]

 2

Memory Reliability Trends
 Memory is becoming less reliable as its density

increases with technology scaling
 Reduced retention times
 Increased vulnerability to disturbance
 New error types (e.g., due to inter-cell interference)
 …

 Maintaining reliability is expensive in terms of
 Energy
 Performance
 Cost (TCO)

3

DRAM Scaling

 DRAM technology scaling has provided many
benefits
 Higher capacity
 Lower cost
 Reasonable energy

 DRAM scaling is becoming difficult due to reduced

reliability
 ITRS projects DRAM will not scale easily below X nm

4

The DRAM Scaling Problem
 DRAM stores charge in a capacitor (charge-based memory)

 Capacitor must be large enough for reliable sensing
 Access transistor should be large enough for low leakage and high

retention time
 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009]

 DRAM capacity, cost, and energy/power hard to scale

5

The DRAM Scaling Problem

 DRAM scaling has become a real problem the
system should be concerned about
 And, maybe embrace

6

Flipping Bits in Memory
Without Accessing Them

Yoongu Kim
Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,

Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu

DRAM Disturbance Errors

 Row of Cells
 Row
 Row
 Row
 Row

 Wordline

 VLOW VHIGH
 Victim Row

 Victim Row
 Aggressor Row

Repeatedly opening and closing a row
induces disturbance errors in adjacent rows
in most real DRAM chips [Kim+ ISCA 2014]

Opened Closed

8

An Example of The Scaling Problem

Quick Summary
• We expose the existence and prevalence of

disturbance errors in DRAM chips of today
– 110 of 129 modules are vulnerable
– Affects modules of 2010 vintage or later

• We characterize the cause and symptoms
– Toggling a row accelerates charge leakage in

adjacent rows: row-to-row coupling

• We prevent errors using a system-level approach
– Each time a row is closed, we refresh the charge

stored in its adjacent rows with a low probability
9

Experimental Infrastructure (DRAM)

10

Liu+, “An Experimental Study of Data
Retention Behavior in Modern DRAM
Devices: Implications for Retention Time
Profiling Mechanisms”, ISCA 2013.

Khan+, “The Efficacy of Error Mitigation
Techniques for DRAM Retention Failures: A
Comparative Experimental Study,”
SIGMETRICS 2014.

Experimental Infrastructure (DRAM)

11 Kim+, “Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors,” ISCA 2014.

Temperature
Controller

PC

Heater FPGAs FPGAs

Most DRAM Modules Are at Risk

86%
(37/43)

83%
(45/54)

88%
(28/32)

A company B company C company

Up to
1.0×107

errors

Up to
2.7×106

errors

Up to
3.3×105

errors

12
Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

DRAM Module x86 CPU

Y

X

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

DRAM Module x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Module x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

DRAM Module x86 CPU

loop:
 mov (X), %eax
 mov (Y), %ebx
 clflush (X)
 clflush (Y)
 mfence
 jmp loop

Y

X

Observed Errors in Real Systems

• In a more controlled environment, we can
induce as many as ten million disturbance errors

• A real reliability & security issue

CPU Architecture Errors Access-Rate

Intel Haswell (2013) 22.9K 12.3M/sec

Intel Ivy Bridge (2012) 20.7K 11.7M/sec

Intel Sandy Bridge (2011) 16.1K 11.6M/sec

AMD Piledriver (2012) 59 6.1M/sec

17 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of
DRAM Disturbance Errors,” ISCA 2014.

Security Implications
• Breach of memory protection

– OS page (4KB) fits inside DRAM row (8KB)
– Adjacent DRAM row Different OS page

• Vulnerability: disturbance attack
– By accessing its own page, a program could

corrupt pages belonging to another program

• We constructed a proof-of-concept
– Using only user-level instructions

18

Errors vs. Vintage

19
All modules from 2012–2013 are vulnerable

First
Appearance

Characterization Results
1. Most Modules Are at Risk
2. Errors vs. Vintage
3. Error = Charge Loss
4. Adjacency: Aggressor & Victim
5. Sensitivity Studies
6. Other Results in Paper

20

Several Potential Solutions

21

Cost • Make better DRAM chips

Cost, Power • Sophisticated ECC

Power, Performance • Refresh frequently

Cost, Power, Complexity • Access counters

Our Solution
• PARA: Probabilistic Adjacent Row Activation

• Key Idea
– After closing a row, we activate (i.e., refresh) one of

its neighbors with a low probability: p = 0.005

• Reliability Guarantee
– When p=0.005, errors in one year: 9.4×10-14
– By adjusting the value of p, we can provide an

arbitrarily strong protection against errors

22

More Information …

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu,
"Flipping Bits in Memory Without Accessing Them: An
Experimental Study of DRAM Disturbance Errors"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf)
Lightning Session Slides (pptx) (pdf) Source Code and Data

23

http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_isca14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_kim_talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_kim_talk_isca14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dram-row-hammer_kim_lightning-talk_isca14.pdf
https://github.com/CMU-SAFARI/rowhammer

Some New Ideas (This Year)
 Specialization

 Heterogeneous Reliability Memory [DSN 2014]
 Heterogeneous Block Architecture [ICCD 2014]

 Persistent Memory
 Loose Ordering Consistency for Persistent Memory [ICCD 2014]
 Transparent Consistency for Persistent/Hybrid Memory [in progress]

 Memory Reliability/Security
 Row Hammer Problem in DRAM [ISCA 2014]
 Neighbor-Cell Assisted Error Correction in Flash [SIGMETRICS 2014]
 Error Mitigation for Intermittent DRAM Failures [SIGMETRICS 2014]

 Memory Performance
 The Dirty-Block Index [ISCA 2014]
 DRAM Refresh-Access Parallelization [HPCA 2014]
 The Blacklisting Memory Scheduler [ICCD 2014]
 Exploiting Read-Write Disparity in Caches [HPCA 2014]

 24

Characterizing Application
Memory Error Vulnerability to
Optimize Datacenter Cost via

Heterogeneous-Reliability Memory
Yixin Luo, Sriram Govindan, Bikash Sharma,

Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu,
Badriddine Khessib, Kushagra Vaid, Onur Mutlu

Executive Summary
• Problem: Reliable memory hardware increases cost
• Our Goal: Reduce datacenter cost; meet availability target
• Observation: Data-intensive applications’ data exhibit a

diverse spectrum of tolerance to memory errors
‐ Across applications and within an application
‐ We characterized 3 modern data‐intensive applications

• Our Proposal: Heterogeneous-reliability memory (HRM)
‐ Store error‐tolerant data in less‐reliable lower‐cost memory
‐ Store error‐vulnerable data in more‐reliable memory

• Major results:
‐ Reduce server hardware cost by 4.7 %
‐ Achieve single server availability target of 99.90 %

26

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

27

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

28

Server Memory Cost is High
•Server hardware cost dominates datacenter Total
Cost of Ownership (TCO) [Barroso ‘09]

•As server memory capacity grows, memory cost
becomes the most important component of server
hardware costs [Kozyrakis ‘10]

29

128GB Memory cost
~$140(per 16GB)×8
= ~$1120 *

2 CPUs cost
~$500(per CPU)×2
= ~$1000 *

* Numbers in the year of 2014

Memory Reliability is Important

30

System/app crash

System/app
hang or

slowdown

Silent data corruption or
incorrect app output

0

2

4

6

8

10

12

1 Mb 4 Mb 16 Mb 64 Mb 256 Mb 1 Gb 4 Gb

Te
st

in
g

co
st

/M
em

 c
os

t (
%

)

DRAM chip capacity

[DocMemory '00] Predicted as trend

Memory testing cost can be a significant
fraction of memory cost as memory capacity grows

Existing Error Mitigation Techniques (I)

• Quality assurance tests increase manufacturing cost

31

Stronger error protection techniques have higher cost

In
cr

ea
sin

g
st

re
ng

th

Existing Error Mitigation Techniques (II)

• Error detection and correction increases system cost

32

Technique Detection Correction Added
capacity

Added
logic

NoECC N/A N/A 0.00% No
Parity 1 bit N/A 1.56% Low

SEC‐DED 2 bit 1 bit 12.5% Low
Chipkill 2 chip 1 chip 12.5% High

Parity 1 bit N/A 1.56%
SEC‐DED 2 bit 1 bit 12.5% SEC‐DED 2 bit 1 bit 12.5% Low
Chipkill 2 chip 1 chip 12.5% High

Goal: Design a new cost‐efficient memory system
that flexibly matches memory reliability
with application memory error tolerance

Shortcomings of Existing Approaches

•Uniformly improve memory reliability
‐ Observation 1: Memory error tolerance varies
across applications and with an application

•Rely only on hardware-level techniques
‐ Observation 2: Once a memory error is detected,
most corrupted data can be recovered by software

33

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

34

Memory Error Outcomes

Characterization Goal

35

Memory Error

System/App
Crash

Incorrect
Response

Masked by
Logic

Masked by
Overwrite

Consumed by
Application

Correct Result Incorrect Result

x = …010… x = …110…

Store

x = …000…

Load

if (x != 0)
…

return x;
or
*x;

Quantify application memory error tolerance
corrupted

Characterization Methodology
•3 modern data-intensive applications

•3 dominant memory regions
‐ Heap – dynamically allocated data
‐ Stack – function parameters and local variables
‐ Private – private heap managed by user

• Injected a total of 23,718 memory errors using
software debuggers (WinDbg and GDB)

•Examined correctness for over 4 billion queries
36

Application WebSearch Memcached GraphLab
Memory footprint 46 GB 35 GB 4 GB

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

37

0

2

4

6

8

10

12

14

WebSearch Memcached GraphLab

Pr
ob

ab
ili

ty
 o

f C
ra

sh
 (%

)

System/Application Crash

>10× difference

Observation 1: Memory Error Tolerance Varies
Across Applications

Showing results for single‐bit soft errors
Results for other memory error types can be found in the paper with similar conclusion 38

1.E+0
1.E+1
1.E+2
1.E+3
1.E+4
1.E+5
1.E+6
1.E+7
1.E+8

WebSearch Memcached GraphLab

In

co
rr

ec
t/

Bi
lli

on
 Q

ue
rie

s

Incorrect Responses

>105× difference

Observation 1: Memory Error Tolerance Varies
Across Applications

Showing results for single‐bit soft errors
Results for other memory error types can be found in the paper 39

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Private Heap Stack

Pr
ob

ab
ili

ty
 o

f C
ra

sh
 (%

)

System/Application Crash

>4× difference

Showing results for WebSearch
Results for other workloads can be found in the paper

Observation 1: Memory Error Tolerance Varies
and Within an Application Across Applications

40

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

Private Heap Stack

In

co
rr

ec
t/

Bi
lli

on
 Q

ue
rie

s

Incorrect Responses

Showing results for WebSearch
Results for other workloads can be found in the paper

15
All averaged at a very low rate

Observation 1: Memory Error Tolerance Varies
and Within an Application Across Applications

41

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

42

• Implicitly recoverable – application intrinsically has a clean
copy of the data on disk

• Explicitly recoverable – application can create a copy of the
data at a low cost (if it has very low write frequency)

43

Observation 2: Data Can be Recovered by Software
Implicitly and Explicitly

88%

59%

1%

82%
63%

28%
16%

56%

Private Heap Stack Overall

WebSearch Recoverability

Implicitly
recoverable

Explicitly
recoverable

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

44

App/Data A App/Data B App/Data C

M
em

or
y

er
ro

r v
ul

ne
ra

bi
lit

y

Vulnerable
data

Tolerant
data

Exploiting Memory Error Tolerance

Heterogeneous‐Reliability Memory

Low‐cost memory Reliable memory

Vulnerable
data

Tolerant
data

Vulnerable
data

Tolerant
data

• ECC protected
• Well‐tested chips

• NoECC or Parity
• Less‐tested chips

45

Memory

Page
A

Page
B

Par+R: Parity Detection + Software Recovery

46

Implicit Recovery Explicit Recovery

Memory

Disk
Page

A
Page

A

Memory Error

Disk

Page
A

Memory Error

Page
B

Page
B

Write

Write non‐
intensive

Write
intensive

Intrinsic

copy

Copy Copy

Heterogeneous‐Reliability Memory

App 1
data A

App 1
data B

App 2
data A

App 2
data B

App 3
data A

App 3
data B

Step 2: Map application data to the HRM system
enabled by SW/HW cooperative solutions

Step 1: Characterize and classify
application memory error tolerance

Reliable
memory

Parity memory
+ software recovery (Par+R)

Low‐cost memory

Unreliable Reliable

Vulnerable Tolerant

App 1
data A

App 2
data A

App 2
data B

App 3
data A

App 3
data B

App 1
data B

47

Outline
•Motivation
•Characterizing application memory error tolerance
•Key observations

‐ Observation 1: Memory error tolerance varies
across applications and within an application

‐ Observation 2: Data can be recovered by software

•Heterogeneous‐Reliability Memory (HRM)
•Evaluation

48

Evaluated Systems

49

Configuration
Mapping

Pros and Cons Private
(36 GB)

Heap
(9 GB)

Stack
(60 MB)

Typical Server ECC ECC ECC Reliable but expensive
Consumer PC NoECC NoECC NoECC Low‐cost but unreliable
HRM Par+R NoECC NoECC Parity only

Baseline systems HRM systems

Less-Tested (L) NoECC NoECC NoECC Least expensive and reliable
HRM/L ECC Par+R NoECC Low‐cost and reliable HRM

Design Parameters

50

DRAM/server HW cost [Kozyrakis ‘10] 30%
NoECC memory cost savings 11.1%
Parity memory cost savings 9.7%

Less‐tested memory cost savings 18%±12%
Crash recovery time 10 mins

Par+R flush threshold 5 mins
Errors/server/month [Schroeder ‘09] 2000

Target single server availability 99.90%

Evaluation Metrics
•Cost
‐ Memory cost savings
‐ Server HW cost savings
(both compared with Typical Server)

•Reliability
‐ Crashes/server/month
‐ Single server availability
‐ # incorrect/million queries

51

Improving Server HW Cost Savings

52

3.3 2.9

8.1

4.7

0

2

4

6

8

Typical
Server

Consumer
PC

HRM Less‐Tested HRM/L

Se
rv

er
 H

W
 c

os
t s

av
in

gs
 (%

)

Reducing the use of memory error mitigation
techniques in part of memory space can save

noticeable amount of server HW cost

HRM systems are flexible to adjust
and can achieve availability target

97
97.5

98
98.5

99
99.5
100

Typical
Server

Consumer
PC

HRM Less‐Tested HRM/LSi
ng

le
 se

rv
er

 a
va

ila
bi

lit
y

(%
)

Achieving Target Availability

53

Single server availability
target: 99.90%

Achieving Acceptable Correctness

54

33

9

163

12

1

10

100

1000

Typical
Server

Consumer
PC

HRM Less‐Tested HRM/L

in

co
rr

ec
t/

m
ill

io
n

qu
er

ie
s

HRM systems can achieve acceptable correctness

Evaluation Results
Typical Server
Consumer PC
HRM
Less-Tested (L)
HRM/L

Bigger area means better tradeoff 55

Outer is better Inner is worse

http://www.cs.cmu.edu/afs/cs/usr/yixinluo/www/bin-debug/RadarChart_Demo.swf

Other Results and Findings
• Characterization of applications’ reactions to memory errors

‐ Finding: Quick‐to‐crash vs. periodically incorrect behavior

• Characterization of most common types of memory errors
including single-bit soft/hard errors, multi-bit hard errors
‐ Finding: More severe errors mainly decrease correctness

• Characterization of how errors are masked
‐ Finding: Some memory regions are safer than others

• Discussion about heterogeneous reliability design dimensions,
techniques, and their benefits and tradeoffs

56

Conclusion
• Our Goal: Reduce datacenter cost; meet availability target

• Characterized application-level memory error tolerance of
3 modern data-intensive workloads

• Proposed Heterogeneous-Reliability Memory (HRM)
‐ Store error‐tolerant data in less‐reliable lower‐cost memory
‐ Store error‐vulnerable data in more‐reliable memory

• Evaluated example HRM systems
‐ Reduce server hardware cost by 4.7 %
‐ Achieve single‐server availability target 99.90 %

57

More Information …

 Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur
Mutlu,
"Characterizing Application Memory Error Vulnerability to
Optimize Data Center Cost via Heterogeneous-Reliability
Memory"
Proceedings of the 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014.
Slides (pptx) (pdf) Coverage on ZDNet

58

http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_dsn14.pdf
http://2014.dsn.org/
http://2014.dsn.org/
http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/

Some New Ideas (This Year)
 Specialization

 Heterogeneous Reliability Memory [DSN 2014]
 Heterogeneous Block Architecture [ICCD 2014]

 Persistent Memory
 Loose Ordering Consistency for Persistent Memory [ICCD 2014]
 Transparent Consistency for Persistent/Hybrid Memory [in progress]

 Memory Reliability/Security
 Row Hammer Problem in DRAM [ISCA 2014]
 Neighbor-Cell Assisted Error Correction in Flash [SIGMETRICS 2014]
 Error Mitigation for Intermittent DRAM Failures [SIGMETRICS 2014]

 Memory Performance
 The Dirty-Block Index [ISCA 2014]
 DRAM Refresh-Access Parallelization [HPCA 2014]
 The Blacklisting Memory Scheduler [ICCD 2014]
 Exploiting Read-Write Disparity in Caches [HPCA 2014]

 59

Some New Ideas in Memory System
Design for Data-Intensive Computing

Onur Mutlu
onur@cmu.edu

September 4, 2014
ISTC-CC Retreat

mailto:onur@cmu.edu

Backup Slides

61

The Dirty-Block Index

62

The Dirty-Block Index

Vivek Seshadri
Abhishek Bhowmick ∙ Onur Mutlu

Phillip B. Gibbons ∙ Michael A. Kozuch ∙ Todd C. Mowry

ISCA 2014

Mismatch: Representation and Query

A

B
C

Z

…

Sorted by Title

Get all the books
written by author X

Breadth First
Search

List all edges
adjacent to

vertex ‘a’

0 1 0 0 0

1 0 1 1 0

0 1 0 0 0

0 1 0 0 1

0 0 0 1 0

a

c
b

d
e

Mismatch: Representation and Query

Tag Tag
Tag Tag
Tag Tag
Tag Tag

D
D
D
D

D
D
D
D

Cache Tag Store

Dirty Bit

Is block X
dirty?

List all dirty
blocks of

DRAM row R.

Mismatch: Representation and Query

Tag Tag
Tag Tag
Tag Tag
Tag Tag

Cache Tag Store

DBI

Dirty-Block Index

Is block X
dirty?

List all dirty
blocks of

DRAM row R.

The Dirty-Block Index

Application: DRAM-Aware Writeback

68

Last‐Level
Cache

Memory
Controller

DRAM

Channel
Write
Buffer

1. Buffer writes and flush them in a burst

2. Row buffer hits are faster and more efficient than row misses

Row
Buffer

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

The Dirty-Block Index

Application: DRAM-Aware Writeback

69

Dirty Block
Proactively write back

all other dirty blocks from
the same DRAM row

Last‐Level
Cache

Significantly increases the DRAM write row hit rate

Get all dirty blocks of DRAM row ‘R’

Memory
Controller

R R R R R

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

The Dirty-Block Index 70

Get all dirty blocks of DRAM row ‘R’

Cache
Tag Store

Set of blocks co-located in DRAM
~8KB = 128 cache blocks

Is block 1 of Row R dirty?
Is block 2 of Row R dirty?
Is block 3 of Row R dirty?

Is block 128 of Row R dirty?

…

Shortcoming of Block-Oriented Organization

The Dirty-Block Index

The Dirty-Block Index (DBI)

71

V Block Address Sh Repl ECC

Cache
Tag Store

Tag Entry

D

DBI

DRAM row‐oriented organization
of dirty bits

The Dirty-Block Index

DRAM-Aware Writeback w/ DBI

72

1

Dirty Block
Proactively write back

all other dirty blocks from
the same DRAM row

1 0 0 0 R 1 1 0 1 0

Look up the cache only for these blocks

Last‐Level
Cache

DBI

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]

DBI

Many Optimizations

1. DRAM-aware writeback
2. Bypassing cache lookups
3. Reducing ECC overhead
4. Efficient cache flushing
5. Load balancing memory accesses
6. Bulk DMA
7. Efficient write scheduling
...

Many Optimizations

1. DRAM-aware writeback
2. Bypassing cache lookups
3. Reducing ECC overhead
4. Efficient cache flushing
5. Load balancing memory accesses
6. Bulk DMA
7. Efficient write scheduling
...

DBI

More Information …

 Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons,
Michael A. Kozuch, and Todd C. Mowry,
"The Dirty-Block Index"
Proceedings of the 41st International Symposium on Computer
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf)
Lightning Session Slides (pptx) (pdf)

75

http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_talk_isca14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pdf

Refresh-Access Parallelization

76

Refresh Penalty

Processor

M
em

or
y

Co
nt

ro
lle

r

77

DRAM Refresh Read
Data

Capacitor

Access
transistor

Refresh delays requests by 100s of ns

Time

Per-bank refresh in mobile DRAM (LPDDRx)

Existing Refresh Modes

78

Time

All-bank refresh in commodity DRAM (DDRx)

Bank 7

Bank 1
Bank 0

…

Bank 7

Bank 1
Bank 0

…

Refresh

Round-robin order

Per-bank refresh allows accesses to other
banks while a bank is refreshing

Shortcomings of Per-Bank Refresh
• Problem 1: Refreshes to different banks are scheduled

in a strict round‐robin order
– The static ordering is hardwired into DRAM chips
– Refreshes busy banks with many queued requests when

other banks are idle

• Key idea: Schedule per‐bank refreshes to idle banks
opportunistically in a dynamic order

79

Our First Approach: DARP
• Dynamic Access-Refresh Parallelization (DARP)

– An improved scheduling policy for per-bank refreshes
– Exploits refresh scheduling flexibility in DDR DRAM

• Component 1: Out-of-order per-bank refresh

– Avoids poor static scheduling decisions
– Dynamically issues per-bank refreshes to idle banks

• Component 2: Write-Refresh Parallelization
– Avoids refresh interference on latency-critical reads
– Parallelizes refreshes with a batch of writes

80

Shortcomings of Per-Bank Refresh
• Problem 2: Banks that are being refreshed cannot

concurrently serve memory requests

81

Time
Bank 0 RD

Delayed by refresh

Per-Bank Refresh

Shortcomings of Per-Bank Refresh
• Problem 2: Refreshing banks cannot concurrently serve

memory requests
• Key idea: Exploit subarrays within a bank to parallelize

refreshes and accesses across subarrays

82

Time Bank 0
Subarray 1

Subarray 0

RD

Subarray Refresh Time

Parallelize

Methodology

• 100 workloads: SPEC CPU2006, STREAM, TPC‐C/H, random access

• System performance metric: Weighted speedup

83

DDR3 Rank

Simulator configurations

M
em

or
y

Co
nt

ro
lle

r
8-core

processor

M
em

or
y

Co
nt

ro
lle

r

Bank 7

Bank 1

Bank 0

…

L1 $: 32KB
L2 $: 512KB/core

Comparison Points
• All-bank refresh [DDR3, LPDDR3, …]

• Per-bank refresh [LPDDR3]

• Elastic refresh [Stuecheli et al., MICRO ‘10]:

– Postpones refreshes by a time delay based on the predicted
rank idle time to avoid interference on memory requests

– Proposed to schedule all‐bank refreshes without exploiting
per‐bank refreshes

– Cannot parallelize refreshes and accesses within a rank

• Ideal (no refresh)
84

0

1

2

3

4

5

6

8Gb 16Gb 32Gb

W
ei

gh
te

d
Sp

ee
du

p
(G

eo
M

ea
n)

DRAM Chip Density

All‐Bank

Per‐Bank

Elastic

DARP

SARP

DSARP

Ideal

System Performance

85

7.9% 12.3% 20.2%

1. Both DARP & SARP provide performance gains and
combining them (DSARP) improves even more
2. Consistent system performance improvement across
DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)

Energy Efficiency

86

3.0% 5.2% 9.0%

Consistent reduction on energy consumption

0
5

10
15
20
25
30
35
40
45

8Gb 16Gb 32Gb

En
er

gy
 p

er
 A

cc
es

s (
nJ

)

DRAM Chip Density

All‐Bank

Per‐Bank

Elastic

DARP

SARP

DSARP

Ideal

	Some New Ideas in Memory System Design for Data-Intensive Computing�
	Some New Ideas (This Year)
	Memory Reliability Trends
	DRAM Scaling
	The DRAM Scaling Problem
	The DRAM Scaling Problem
	Flipping Bits in Memory Without Accessing Them
	An Example of The Scaling Problem
	Quick Summary
	Experimental Infrastructure (DRAM)
	Experimental Infrastructure (DRAM)
	Most DRAM Modules Are at Risk
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Observed Errors in Real Systems
	Security Implications
	Errors vs. Vintage
	Characterization Results
	Several Potential Solutions
	Our Solution
	More Information …
	Some New Ideas (This Year)
	Characterizing Application �Memory Error Vulnerability to �Optimize Datacenter Cost via Heterogeneous-Reliability Memory
	Executive Summary
	Outline
	Outline
	Server Memory Cost is High
	Memory Reliability is Important
	Existing Error Mitigation Techniques (I)
	Existing Error Mitigation Techniques (II)
	Shortcomings of Existing Approaches
	Outline
	Characterization Goal
	Characterization Methodology
	Outline
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Outline
	Slide Number 43
	Outline
	Exploiting Memory Error Tolerance
	Par+R: Parity Detection + Software Recovery
	Heterogeneous-Reliability Memory
	Outline
	Evaluated Systems
	Design Parameters
	Evaluation Metrics
	Improving Server HW Cost Savings
	Achieving Target Availability
	Achieving Acceptable Correctness
	Evaluation Results
	Other Results and Findings
	Conclusion
	More Information …
	Some New Ideas (This Year)
	Some New Ideas in Memory System Design for Data-Intensive Computing�
	Backup Slides
	The Dirty-Block Index
	The Dirty-Block Index
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Application: DRAM-Aware Writeback
	Application: DRAM-Aware Writeback
	Shortcoming of Block-Oriented Organization
	The Dirty-Block Index (DBI)
	DRAM-Aware Writeback w/ DBI
	Slide Number 73
	Slide Number 74
	More Information …
	Refresh-Access Parallelization
	Refresh Penalty
	Existing Refresh Modes
	Shortcomings of Per-Bank Refresh
	Our First Approach: DARP
	Shortcomings of Per-Bank Refresh
	Shortcomings of Per-Bank Refresh
	Methodology
	Comparison Points
	System Performance
	Energy Efficiency

