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Some New Ideas (This Year) 
 Specialization 

 Heterogeneous Reliability Memory [DSN 2014] 
 Heterogeneous Block Architecture [ICCD 2014] 

 Persistent Memory 
 Loose Ordering Consistency for Persistent Memory [ICCD 2014] 
 Transparent Consistency for Persistent/Hybrid Memory [in progress] 

 Memory Reliability/Security 
 Row Hammer Problem in DRAM [ISCA 2014] 
 Neighbor-Cell Assisted Error Correction in Flash [SIGMETRICS 2014] 
 Error Mitigation for Intermittent DRAM Failures [SIGMETRICS 2014] 

 Memory Performance 
 The Dirty-Block Index [ISCA 2014] 
 DRAM Refresh-Access Parallelization [HPCA 2014] 
 The Blacklisting Memory Scheduler [ICCD 2014] 
 Exploiting Read-Write Disparity in Caches [HPCA 2014] 
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Memory Reliability Trends 
 Memory is becoming less reliable as its density 

increases with technology scaling 
 Reduced retention times 
 Increased vulnerability to disturbance 
 New error types (e.g., due to inter-cell interference) 
 … 

 

 Maintaining reliability is expensive in terms of 
 Energy 
 Performance 
 Cost (TCO) 
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DRAM Scaling 

 DRAM technology scaling has provided many 
benefits 
 Higher capacity 
 Lower cost  
 Reasonable energy 

 
 DRAM scaling is becoming difficult due to reduced 

reliability 
 ITRS projects DRAM will not scale easily below X nm  
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The DRAM Scaling Problem 
 DRAM stores charge in a capacitor (charge-based memory) 

 Capacitor must be large enough for reliable sensing 
 Access transistor should be large enough for low leakage and high 

retention time 
 Scaling beyond 40-35nm (2013) is challenging [ITRS, 2009] 

 
 
 
 
 
 
 
 

 DRAM capacity, cost, and energy/power hard to scale 
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The DRAM Scaling Problem 

 DRAM scaling has become a real problem the 
system should be concerned about 
 And, maybe embrace 
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Flipping Bits in Memory 
Without Accessing Them 

Yoongu Kim 
Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee,  

Donghyuk Lee, Chris Wilkerson, Konrad Lai, Onur Mutlu 

DRAM Disturbance Errors 



 Row of Cells 
 Row 
 Row 
 Row 
 Row 
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 Victim Row 

 Victim Row 
 Aggressor Row 

Repeatedly opening and closing a row 
induces disturbance errors in adjacent rows 
in most real DRAM chips [Kim+ ISCA 2014] 

Opened Closed 
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An Example of  The Scaling Problem 



Quick Summary 
• We expose the existence and prevalence of 

disturbance errors in DRAM chips of today 
– 110 of 129 modules are vulnerable 
– Affects modules of 2010 vintage or later 

 

• We characterize the cause and symptoms 
– Toggling a row accelerates charge leakage in 

adjacent rows: row-to-row coupling 
 

• We prevent errors using a system-level approach  
– Each time a row is closed, we refresh the charge 

stored in its adjacent rows with a low probability 
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Experimental Infrastructure (DRAM) 
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Liu+, “An Experimental Study of Data 
Retention Behavior in Modern DRAM 
Devices: Implications for Retention Time 
Profiling Mechanisms”, ISCA 2013. 
 
Khan+, “The Efficacy of Error Mitigation 
Techniques for DRAM Retention Failures: A 
Comparative Experimental Study,” 
SIGMETRICS 2014. 



Experimental Infrastructure (DRAM) 

11 Kim+, “Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors,” ISCA 2014. 
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Most DRAM Modules Are at Risk 

86% 
(37/43) 

83% 
(45/54) 

88% 
(28/32) 

A company B company C company 

Up to 
1.0×107  

errors  

Up to 
2.7×106 

errors  

Up to 
3.3×105  

errors  
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Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



DRAM Module x86 CPU 
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X 

loop: 
  mov (X), %eax 
  mov (Y), %ebx 
  clflush (X)   
  clflush (Y) 
  mfence 
  jmp loop 
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Observed Errors in Real Systems 
 
 
 
 
 
 

• In a more controlled environment, we can 
induce as many as ten million disturbance errors 

• A real reliability & security issue  

CPU Architecture Errors Access-Rate 

Intel Haswell (2013) 22.9K 12.3M/sec 

Intel Ivy Bridge (2012) 20.7K 11.7M/sec 

Intel Sandy Bridge (2011) 16.1K 11.6M/sec 

AMD Piledriver (2012) 59 6.1M/sec 

17 Kim+, “Flipping Bits in Memory Without Accessing Them: An Experimental Study of 
DRAM Disturbance Errors,” ISCA 2014. 



Security Implications 
• Breach of memory protection 

– OS page (4KB) fits inside DRAM row (8KB) 
– Adjacent DRAM row  Different OS page 

 

• Vulnerability: disturbance attack 
– By accessing its own page, a program could  

corrupt pages belonging to another program 
 

• We constructed a proof-of-concept 
– Using only user-level instructions 
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Errors vs. Vintage 
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All modules from 2012–2013 are vulnerable 

First 
Appearance 



Characterization Results 
1. Most Modules Are at Risk 
2. Errors vs. Vintage 
3. Error = Charge Loss 
4. Adjacency: Aggressor & Victim 
5. Sensitivity Studies 
6. Other Results in Paper 
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Several Potential Solutions 
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Cost • Make better DRAM chips 

Cost, Power • Sophisticated ECC 

Power, Performance • Refresh frequently 

Cost, Power, Complexity • Access counters  



Our Solution 
• PARA: Probabilistic Adjacent Row Activation 

 

• Key Idea 
– After closing a row, we activate (i.e., refresh) one of 

its neighbors with a low probability: p = 0.005 
 

• Reliability Guarantee 
– When p=0.005, errors in one year: 9.4×10-14 
– By adjusting the value of p, we can provide an 

arbitrarily strong protection against errors 
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More Information … 

 Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk 
Lee, Chris Wilkerson, Konrad Lai, and Onur Mutlu, 
"Flipping Bits in Memory Without Accessing Them: An 
Experimental Study of DRAM Disturbance Errors" 
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf) 
Lightning Session Slides (pptx) (pdf) Source Code and Data  
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Characterizing Application  
Memory Error Vulnerability to  
Optimize Datacenter Cost via 

Heterogeneous-Reliability Memory 
Yixin Luo, Sriram Govindan, Bikash Sharma, 

Mark Santaniello, Justin Meza, Aman Kansal, Jie Liu,  
Badriddine Khessib, Kushagra Vaid, Onur Mutlu 



Executive Summary 
• Problem: Reliable memory hardware increases cost 
• Our Goal: Reduce datacenter cost; meet availability target 
• Observation: Data-intensive applications’ data exhibit a 

diverse spectrum of tolerance to memory errors 
‐ Across applications and within an application 
‐ We characterized 3 modern data-intensive applications 

• Our Proposal: Heterogeneous-reliability memory (HRM) 
‐ Store error-tolerant data in less-reliable lower-cost memory 
‐ Store error-vulnerable data in more-reliable memory 

• Major results: 
‐ Reduce server hardware cost by 4.7 % 
‐ Achieve single server availability target of 99.90 % 
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Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
•Evaluation 
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Server Memory Cost is High 
•Server hardware cost dominates datacenter Total 
Cost of Ownership (TCO) [Barroso ‘09] 
 

•As server memory capacity grows, memory cost 
becomes the most important component of server 
hardware costs [Kozyrakis ‘10] 
 
 

29 

128GB Memory cost 
~$140(per 16GB)×8 
= ~$1120 * 

2 CPUs cost 
~$500(per CPU)×2 
= ~$1000 * 

* Numbers in the year of 2014 



Memory Reliability is Important 
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System/app crash 

System/app 
hang or 

slowdown 

Silent data corruption or 
incorrect app output 
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Memory testing cost can be a significant  
fraction of memory cost as memory capacity grows 

Existing Error Mitigation Techniques (I) 

• Quality assurance tests increase manufacturing cost 
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Stronger error protection techniques have higher cost 
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Existing Error Mitigation Techniques (II) 

• Error detection and correction increases system cost 
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Technique Detection Correction Added 
capacity 

Added 
logic 

NoECC N/A N/A 0.00% No 
Parity 1 bit N/A 1.56% Low 

SEC-DED 2 bit 1 bit 12.5% Low 
Chipkill 2 chip 1 chip 12.5% High 

Parity 1 bit N/A 1.56% 
SEC-DED 2 bit 1 bit 12.5% SEC-DED 2 bit 1 bit 12.5% Low 
Chipkill 2 chip 1 chip 12.5% High 



Goal: Design a new cost-efficient memory system  
that flexibly matches memory reliability  
with application memory error tolerance 

Shortcomings of Existing Approaches 

•Uniformly improve memory reliability 
‐ Observation 1: Memory error tolerance varies  
across applications and with an application 
 

•Rely only on hardware-level techniques 
‐ Observation 2: Once a memory error is detected,  
most corrupted data can be recovered by software 
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Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
•Evaluation 
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Memory Error Outcomes 

Characterization Goal 
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Memory Error 

System/App 
Crash 

Incorrect 
Response 

Masked by 
Logic 

Masked by 
Overwrite 

Consumed by 
Application 

Correct Result Incorrect Result 

x = …010… x = …110… 

Store 

x = …000… 

Load 

if (x != 0) 
… 

return x; 
or  
*x; 

Quantify application memory error tolerance 
corrupted 



Characterization Methodology 
•3 modern data-intensive applications 
 
 

•3 dominant memory regions 
‐ Heap – dynamically allocated data 
‐ Stack – function parameters and local variables 
‐ Private – private heap managed by user 

• Injected a total of 23,718 memory errors using 
software debuggers (WinDbg and GDB) 

•Examined correctness for over 4 billion queries 
36 

Application WebSearch Memcached GraphLab 
Memory footprint 46 GB 35 GB 4 GB 



Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
•Evaluation 
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Observation 1: Memory Error Tolerance Varies 
Across Applications 

Showing results for single-bit soft errors 
Results for other memory error types can be found in the paper with similar conclusion 38 
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Observation 1: Memory Error Tolerance Varies 
Across Applications 

Showing results for single-bit soft errors 
Results for other memory error types can be found in the paper 39 
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Showing results for WebSearch 
Results for other workloads can be found in the paper 

Observation 1: Memory Error Tolerance Varies 
and Within an Application Across Applications 
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Results for other workloads can be found in the paper 
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All averaged at a very low rate 

Observation 1: Memory Error Tolerance Varies 
and Within an Application Across Applications 
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Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
•Evaluation 
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• Implicitly recoverable – application intrinsically has a clean 
copy of the data on disk 

• Explicitly recoverable – application can create a copy of the 
data at a low cost (if it has very low write frequency) 
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Observation 2: Data Can be Recovered by Software 
Implicitly and Explicitly 

88% 

59% 

1% 

82% 
63% 

28% 
16% 

56% 

Private Heap Stack Overall

WebSearch Recoverability 

Implicitly
recoverable

Explicitly
recoverable



Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
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Par+R: Parity Detection + Software Recovery 
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Heterogeneous-Reliability Memory 

App 1 
data A 
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data B 
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Step 2: Map application data to the HRM system 
enabled by SW/HW cooperative solutions 

Step 1: Characterize and classify 
application memory error tolerance 
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Outline 
•Motivation 
•Characterizing application memory error tolerance 
•Key observations 

‐ Observation 1:  Memory error tolerance varies  
across applications and within an application 

‐ Observation 2: Data can be recovered by software 

•Heterogeneous-Reliability Memory (HRM) 
•Evaluation 
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Evaluated Systems 
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Configuration 
Mapping 

Pros and Cons Private 
(36 GB) 

Heap 
(9 GB) 

Stack 
(60 MB) 

Typical Server ECC ECC ECC Reliable but expensive 
Consumer PC NoECC NoECC NoECC Low-cost but unreliable 
HRM Par+R NoECC NoECC Parity only 

Baseline systems HRM systems 

Less-Tested (L) NoECC NoECC NoECC Least expensive and reliable 
HRM/L ECC Par+R NoECC Low-cost and reliable HRM 



    

Design Parameters 
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DRAM/server HW cost [Kozyrakis ‘10] 30% 
NoECC memory cost savings 11.1% 
Parity memory cost savings 9.7% 

Less-tested memory cost savings 18%±12% 
Crash recovery time 10 mins 

Par+R flush threshold 5 mins 
Errors/server/month [Schroeder ‘09] 2000 

Target single server availability 99.90% 



Evaluation Metrics 
•Cost 
‐ Memory cost savings 
‐ Server HW cost savings 
(both compared with Typical Server) 

 
•Reliability 
‐ Crashes/server/month 
‐ Single server availability 
‐ # incorrect/million queries 
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Improving Server HW Cost Savings 
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HRM systems are flexible to adjust  
and can achieve availability target 
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Achieving Acceptable Correctness 
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Evaluation Results 
Typical Server 
Consumer PC 
HRM 
Less-Tested (L) 
HRM/L 

Bigger area means better tradeoff 55 

Outer is better Inner is worse 

http://www.cs.cmu.edu/afs/cs/usr/yixinluo/www/bin-debug/RadarChart_Demo.swf


Other Results and Findings 
• Characterization of applications’ reactions to memory errors 

‐ Finding: Quick-to-crash vs. periodically incorrect behavior 
 

• Characterization of most common types of memory errors 
including single-bit soft/hard errors, multi-bit hard errors 
‐ Finding: More severe errors mainly decrease correctness 
 

• Characterization of how errors are masked 
‐ Finding: Some memory regions are safer than others 
 

• Discussion about heterogeneous reliability design dimensions, 
techniques, and their benefits and tradeoffs 
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Conclusion 
• Our Goal: Reduce datacenter cost; meet availability target 

 

• Characterized application-level memory error tolerance of 
3 modern data-intensive workloads 

 

• Proposed Heterogeneous-Reliability Memory (HRM) 
‐ Store error-tolerant data in less-reliable lower-cost memory 
‐ Store error-vulnerable data in more-reliable memory 

 

• Evaluated example HRM systems 
‐ Reduce server hardware cost by 4.7 % 
‐ Achieve single-server availability target 99.90 % 
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More Information … 

 Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin 
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur 
Mutlu, 
"Characterizing Application Memory Error Vulnerability to 
Optimize Data Center Cost via Heterogeneous-Reliability 
Memory"  
Proceedings of the 44th Annual IEEE/IFIP International Conference on 
Dependable Systems and Networks (DSN), Atlanta, GA, June 2014. 
Slides (pptx) (pdf) Coverage on ZDNet 
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http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/heterogeneous-reliability-memory-for-data-centers_luo_dsn14-talk.pdf
http://www.zdnet.com/how-good-does-memory-need-to-be-7000031853/
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The Dirty-Block Index 
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The Dirty-Block Index 

Vivek Seshadri 
Abhishek Bhowmick ∙ Onur Mutlu 

Phillip B. Gibbons ∙ Michael A. Kozuch ∙ Todd C. Mowry 

ISCA 2014 



Mismatch: Representation and Query 
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The Dirty-Block Index 

Application: DRAM-Aware Writeback 

68 

Last-Level 
Cache 

Memory 
Controller 

DRAM 

Channel 
Write 
Buffer 

1. Buffer writes and flush them in a burst 

2. Row buffer hits are faster and more efficient than row misses 

Row 
Buffer 

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]  



The Dirty-Block Index 

Application: DRAM-Aware Writeback 
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Dirty Block 
Proactively write back  

all other dirty blocks from  
the same DRAM row 

Last-Level 
Cache 

Significantly increases the DRAM write row hit rate 

Get all dirty blocks of DRAM row ‘R’ 
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Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]  



The Dirty-Block Index 70 

Get all dirty blocks of DRAM row ‘R’ 

Cache  
Tag Store 

Set of blocks co-located in DRAM 
~8KB = 128 cache blocks 

Is block 1 of Row R dirty? 
Is block 2 of Row R dirty? 
Is block 3 of Row R dirty? 

Is block 128 of Row R dirty? 

…
 

Shortcoming of Block-Oriented Organization 



The Dirty-Block Index 

The Dirty-Block Index (DBI) 
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The Dirty-Block Index 

DRAM-Aware Writeback w/ DBI 
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1 

Dirty Block 
Proactively write back  

all other dirty blocks from 
the same DRAM row 

1 0 0 0 R 1 1 0 1 0 

Look up the cache only for these blocks 

Last-Level 
Cache 

DBI 

Virtual Write Queue [ISCA 2010], DRAM-Aware Writeback [TR-HPS-2010-2]  



DBI 

Many Optimizations 

1. DRAM-aware writeback 
2. Bypassing cache lookups 
3. Reducing ECC overhead 
4. Efficient cache flushing 
5. Load balancing memory accesses 
6. Bulk DMA 
7. Efficient write scheduling 
... 



Many Optimizations 

1. DRAM-aware writeback 
2. Bypassing cache lookups 
3. Reducing ECC overhead 
4. Efficient cache flushing 
5. Load balancing memory accesses 
6. Bulk DMA 
7. Efficient write scheduling 
... 

DBI 



More Information … 

 Vivek Seshadri, Abhishek Bhowmick, Onur Mutlu, Phillip B. Gibbons, 
Michael A. Kozuch, and Todd C. Mowry, 
"The Dirty-Block Index" 
Proceedings of the 41st International Symposium on Computer 
Architecture (ISCA), Minneapolis, MN, June 2014. Slides (pptx) (pdf) 
Lightning Session Slides (pptx) (pdf)   
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http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_isca14.pdf
http://cag.engr.uconn.edu/isca2014/
http://cag.engr.uconn.edu/isca2014/
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_talk_isca14.pdf
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pptx
http://users.ece.cmu.edu/%7Eomutlu/pub/dirty-block-index_seshadri_lightning-talk_isca14.pdf


Refresh-Access Parallelization 
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DRAM Refresh Read 
Data 

Capacitor 

Access 
transistor 

Refresh delays requests by 100s of ns 



Time 

Per-bank refresh in mobile DRAM (LPDDRx) 

Existing Refresh Modes 
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Time 

All-bank refresh in commodity DRAM (DDRx) 

Bank 7 

Bank 1 
Bank 0 

…
 

Bank 7 

Bank 1 
Bank 0 

…
 

Refresh 

Round-robin order 

Per-bank refresh allows accesses to other 
banks while a bank is refreshing 



Shortcomings of Per-Bank Refresh 
• Problem 1: Refreshes to different banks are scheduled 

in a strict round-robin order  
– The static ordering is hardwired into DRAM chips 
– Refreshes busy banks with many queued requests when 

other banks are idle 
 

• Key idea: Schedule per-bank refreshes to idle banks 
opportunistically in a dynamic order  
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Our First Approach: DARP 
• Dynamic Access-Refresh Parallelization (DARP) 

– An improved scheduling policy for per-bank refreshes 
– Exploits refresh scheduling flexibility in DDR DRAM 

 
• Component 1: Out-of-order per-bank refresh 

– Avoids poor static scheduling decisions 
– Dynamically issues per-bank refreshes to idle banks 

 

• Component 2: Write-Refresh Parallelization 
– Avoids refresh interference on latency-critical reads 
– Parallelizes refreshes with a batch of writes 
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Shortcomings of Per-Bank Refresh 
• Problem 2: Banks that are being refreshed cannot 

concurrently serve memory requests 
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Time 
Bank 0 RD 

Delayed by refresh 

Per-Bank Refresh 



Shortcomings of Per-Bank Refresh 
• Problem 2: Refreshing banks cannot concurrently serve 

memory requests 
• Key idea: Exploit subarrays within a bank to parallelize 

refreshes and accesses across subarrays 
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Subarray Refresh Time 

Parallelize 



Methodology 

 

• 100 workloads: SPEC CPU2006, STREAM, TPC-C/H, random access 

• System performance metric: Weighted speedup 
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L1 $: 32KB 
L2 $: 512KB/core 



Comparison Points 
• All-bank refresh [DDR3, LPDDR3, …] 

 
• Per-bank refresh [LPDDR3] 

 
• Elastic refresh [Stuecheli et al., MICRO ‘10]: 

– Postpones refreshes by a time delay based on the predicted 
rank idle time to avoid interference on memory requests 

– Proposed to schedule all-bank refreshes without exploiting 
per-bank refreshes 

– Cannot parallelize refreshes and accesses within a rank 
 

• Ideal (no refresh) 
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System Performance 
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7.9% 12.3% 20.2% 

1. Both DARP & SARP provide performance gains and 
combining them (DSARP) improves even more 
2. Consistent system performance improvement across 
DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal) 



Energy Efficiency 
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