Hardware-Software Interface Issues in
Heterogeneous Systems:
Design, Verification, and Programming.

Margaret Martonosi
Princeton University

http://www.istc-cc.cmu.edu/

Intel Science & Technology
Center for Cloud Computing

Acknowledgements & Collaborators

e Students on this project:
= Dan Lustig, Princeton
« 2013 Intel Graduate Fellow
= Caroline Trippel, Princeton
e Collaboration with Dr. Michael Pellauer, Intel VSSAD,
Hudson, MA

e Related papers:

= “PipeCheck: Specifying and Verifying Microarchitectural
Enforcement of Memory Consistency Models” To Appear.
MICRO 2014.

o Other work 1n submission.

e Other ISTC-CC students

= Elba Garza, Tae Jun Ham, Wenhao Jia, Logan Stafman,
Ozlem Bilgir Yetim, Yavuz Yetim.

Heterogeneity: HW/SW Challenges

Heterogeneous Parallelism:
Widespread, clear benefits:

e Specialization => high
perf-per-watt

e On-chip, On-Device,
Datacenters, Cloud...

e But programming model is weak:

GPU

GPU

DSP

Accel.

it - T

CPU

| I CPU

CPU

CPU

e e

e.g., Intel Bay Trail SoC

= “1 CPU + peripheral devices” is nowhere near rich enough

for today’s complex processors and systems.

e Our Overall Focus: Programming models and
execution optimizations for Heterogeneous CMPs.

e One Specific Issue: Memory Consistency Models

Diverse processing resources
share data in memory...

GPU [I|GPU | | psp CPU | CPU Py | ©PU
cpul/cPu| |Dsp| |Dsp| |cPu/cpu| | CPU | CPU
I i i i i i i i
L2 Cache L2% L2% L2 Cache L2 Cache
I I I I I I I I

Main Memory

Memory consistency model: the set of rules on
the ordering and visibility of memory accesses

The Challenge: Memory Consistency models are as diverse as

the processors employing them!

Consistency Models

& Preserved Program Order

e Memory Consistency Models (MCMSs) set the
rules regarding which loads and stores may be
reordered relative to each other.
= E.g., Total Store Order (TSO) used by x86

e Other architectures make different (often much
weaker) ordering promises.
= E.g. GPUs make very weak ordering promises
= Even other CPU ISAs (IBM, ARM) make fairly

weak promises

 If “default” promise is weak,
programs/compilers use fence instructions to
provide ordering guarantees required by the

NrNoaram

Our Research Goals

Prame-Ses. o o.iw

e How to verlfy the |mplementat|on of a memory
consistency model in a given processor pipeline?

 How to dynamically translate executing code from
one consistency model to another at runtime?

s Dynamic Consistency Model Translation = Dynamic
Binary Translation

e Seamless design of memory models with “black-
box” IP Blocks?

e Dynamic optimization regarding migration and
optimization of resources to use?

Our Research Goals

 How to verify the implementation of a memory
consistency model in a given processor pipeline?

 How to dynamically translate executing code from
one consistency model to another at runtime?

s Dynamic Consistency Model Translation = Dynamic
Binary Translation

e Seamless design of memory models with “black-
box” IP Blocks?

e Dynamic optimization regarding migration and
optimization of resources to use?

Architecture-Level Analysis:

Happens-before Graphs

& e -l - -

Litmus test: Analysis:

Core O Corel
() st[x],1 | (13)Id[y]=>r1
(12)sty],2 | (14) Id [x] = r2
TSO: Forbid r1=2, r2=0

Generally: A cycle implies that execution

s forbidden Reads from earlier
(Intuition: instruction can’t happen

before itself) (“from-reads”)
[Alglave, FMSD ‘09]

Architecture vs. Implementation...

"

How is the consistency model enforced
at the microarchitecture level?

e Important events are distributed in
both space and time.

Fetch ?
. 2 \ l
Decode J
, . 2 \ Store Loads
Execute Buffer
) v ’ ¢ v

: Memory h=‘ { Memory J

¥ Hierarchy -

Writeback | | Reitds from ear’ller
' (“from-reads”)

N

PipeCheck Verification: Overview

e Model Specification +
e Automatic Analysis 4

=> Microarchitectural
. @ ” FetchStage
equivalent of “happens-before
grap hs DecodeStage
Fetch) ExecuteStage
v \ l MemoryStage
Decode
\ 4 Store Loads [WritebackStage
Execute Buffer
: ¥ / ¢ A 4 StoreBuffer
- Memory Memory MemHierarchy
) v Hierarchy
~ Writeback] 1 Completed

N

U-Happens-Before Graphs

Prans e

Instructions
A

‘- A
(11) (i2)
Program Order

Fetch stage maintains
relative ordering of

Fetch Stage

Locations (i1) and (i2)

or Stages < Decode Stage —
: _ _ _ ecode stage maintains
IN Instruction (il1) flowing

- o relative ordering of
Pipeline through pipeline (i1) and (i2)

\Execute Stage

Xecute stage maintain
relative ordering of
(i1) and (i2)

U-Happens-Before Graphs

Instructions
A

(. h
St [7 Performs with
[2] respect to Ld [z]
_ all cores
Memory
Stage
: oypro
Locations Reads
or Stages < Store Buffer
_ in_ Performs with respect
Pipeline to issuing core
&Cache/Memor
y Performs with respect

o remote cores

More Complex Cases

With a

uarc h-level FetchStage
view, special DecodeStage
exceptions ExecuteStage
are no MemoryStage
longer
needed

WritebackStage

PipeCheck Implementation Summary

A g —°5%—__
e Pipelines modeled by specifying:
= |ist of stages
= |ist of possible paths through the pipeline
s set of “non-local edges” (details in poster)
= |ist of “performing locations”

Pipeline Lines of Code
Classic 5-Stage Pipeline 37
without Store Buffer
Classic 5-Stage Pipeline 62

with Store Buffer

gem5 O3 CPU Model 106
OpenSPARC T2 115

PipeCheck Implementation Summary

e Tool written in Cog and extracted to OCaml
= Open to future formal verification

e PipeCheck software verifies each pipeline
against suite of litmus tests and PPO tests

= Automatically enumerate all possible executions
(1.e. all possible graphs) for each pipeline model/
test pair

Observable Not

Observable
Permitted OK OK (uarch stricter
than necessary)
Pipeline

Forbidden OK

bug!!

Ime

T

-
=

L

Ifica

Ver

|
—
—
—
|
—
|
S
| |
-
N r
—~ . F
0 m Q —
22 «
nWBM —
/.\(OS
550 0
hnh € 8
[I ¢ b
o wuw >0
H B B B
| |
| | |
A " =
S S S O O
— o ©
o

(09s) awnuny |00 |

UuealWOg9)

u

cu

Ju

9'zdmi
MIdl/9pwe
6pwe/iy zdmi
gpwe/g zdmi
Gu

Tpwe/T zdmi
Zpwe/z zdmi
Tu

cpwe

ou
[P=aduajun-MI
Tge zdmi
ypweseg zdmi

Litmus Test

Litmus Test Results

. 5-Stage 5-Stage gem5 OpenSPARC
Litmus Test Expected ./ 'ci ‘B¢ w/ St Buf 03 T2
Observed 1. Permitted results not
iwp2.1/amdl Forbid v v 2 v) . .
observable: pipeline
iwp2.3a/amd4 Permit Not obs.! v v v
iwp2.3b Permit v v v 4
wp2.4/amd9 | Permit | Notobs. v v v 2. Forbidden results
wp2.5/amds | Forbid y y Observed y opser_ved. Found bugs in
pipeline!
iwp2.6 Forbid v (4 4 4
amd3 Permit Not obs.! v v v
amd6 Forbid v v Observed v
nl Permit Not obs.! v "4 v
n2 Forbid v v Obsezr"ed v
n4 Forbid 4 v v v
n5 Forbid (V4 v v v
n6 Permit (V4 v (V4 v
n7 Permit Not obs.! v v v
rwc-unfenced Permit Not obs.! v v v

Other Work...

e ArMOR: Automatic translation from one memory
consistency model to another.

= Binary translation for *consistency model* differences, not
just ISA differences.

= Supports agile migration from one ISA+MCM to another

e Application-Aware Data Motion optimizations.

= Communication accelerators, not just computation
accelerators.

e Design Space Exploration

= Fast regression-based methods for estimating optimal hw
and sw design parameter choices in heterogeneous design
spaces.

Conclusions
e Heterogeneous parallelism is here and growing.
e Heterogenelty affects every aspect of our ability
to specify, verify, and building performance-
optimized parallel systems.

e Recent work: Specification + Automatic Analysis

s PipeCheck: Fast, automatic verification of
consistency implementations against their higher-
level architectural abstractions.

s ArMOR: Fast binary translation of executables
from one consistency model to another.

e Future: CPU + accelerator, cross-data-center, ...

Acknowledgements & Collaborators

e Students on this project:
= Dan Lustig, Princeton
« 2013 Intel Graduate Fellow
= Caroline Trippel, Princeton
e Collaboration with Dr. Michael Pellauer, Intel VSSAD,
Hudson, MA

e Related papers:

= “PipeCheck: Specifying and Verifying Microarchitectural
Enforcement of Memory Consistency Models” To Appear.
MICRO 2014.

o Other work 1n submission.

e Other ISTC-CC students

= Elba Garza, Tae Jun Ham, Wenhao Jia, Logan Stafman,
Ozlem Bilgir Yetim, Yavuz Yetim.

Hardware-Software Interface Issues in
Heterogeneous Systems: Design,
Verification, and Programming.

Margaret Martonosi
Princeton University

http://www.istc-cc.cmu.edu/

Intel Science & Technology
Center for Cloud Computing

	Hardware-Software Interface Issues in Heterogeneous Systems: �Design, Verification, and Programming.
	Acknowledgements & Collaborators
	Heterogeneity: HW/SW Challenges
	Diverse processing resources�share data in memory…
	Consistency Models �& Preserved Program Order
	Our Research Goals
	Our Research Goals
	Architecture-Level Analysis:�Happens-before Graphs
	Architecture vs. Implementation…
	PipeCheck Verification: Overview
	µ-Happens-Before Graphs
	µ-Happens-Before Graphs
	 More Complex Cases
	PipeCheck Implementation Summary
	PipeCheck Implementation Summary
	Verification Time
	Litmus Test Results
	Other Work…
	Conclusions
	Acknowledgements & Collaborators
	Hardware-Software Interface Issues in Heterogeneous Systems: Design, Verification, and Programming.

