
http://www.istc-cc.cmu.edu/

Margaret Martonosi
Princeton University

Hardware-Software Interface Issues in
Heterogeneous Systems:

Design, Verification, and Programming.

• Students on this project:
▫ Dan Lustig, Princeton
 2013 Intel Graduate Fellow

▫ Caroline Trippel, Princeton
• Collaboration with Dr. Michael Pellauer, Intel VSSAD,

Hudson, MA

• Related papers:
▫ “PipeCheck: Specifying and Verifying Microarchitectural

Enforcement of Memory Consistency Models” To Appear.
MICRO 2014.

▫ Other work in submission.

• Other ISTC-CC students
▫ Elba Garza, Tae Jun Ham, Wenhao Jia, Logan Stafman,

Ozlem Bilgir Yetim, Yavuz Yetim.

Acknowledgements & Collaborators

• But programming model is weak:
▫ “1 CPU + peripheral devices” is nowhere near rich enough

for today’s complex processors and systems.
• Our Overall Focus: Programming models and

execution optimizations for Heterogeneous CMPs.
• One Specific Issue: Memory Consistency Models

Heterogeneity: HW/SW Challenges

Heterogeneous Parallelism:
Widespread, clear benefits:
• Specialization => high

perf-per-watt
• On-chip, On-Device,

Datacenters, Cloud…

DSP
Accel.

GPU
GPU CPU

CPU

CPU

CPU

e.g., Intel Bay Trail SoC

Memory consistency model: the set of rules on
the ordering and visibility of memory accesses

The Challenge: Memory Consistency models are as diverse as

the processors employing them!

Diverse processing resources
share data in memory…

CPU CPU

CPU CPU CPU CPU
CPU CPU

DSP
DSP
DSP

Main Memory

L2 Cache L2$ L2$ L2 Cache L2 Cache

GPU GPU GPU GPU GPU GPU GPU GPU
GPU GPU GPU GPU GPU GPU GPU GPU

GPU GPU GPU GPU GPU GPU GPU GPU
GPU GPU GPU GPU GPU GPU GPU GPU

• Memory Consistency Models (MCMs) set the
rules regarding which loads and stores may be
reordered relative to each other.
▫ E.g., Total Store Order (TSO) used by x86

• Other architectures make different (often much
weaker) ordering promises.
▫ E.g. GPUs make very weak ordering promises
▫ Even other CPU ISAs (IBM, ARM) make fairly

weak promises
• If “default” promise is weak,

programs/compilers use fence instructions to
provide ordering guarantees required by the
program

Consistency Models
& Preserved Program Order

• How to verify the implementation of a memory
consistency model in a given processor pipeline?

• How to dynamically translate executing code from

one consistency model to another at runtime?
▫ Dynamic Consistency Model Translation ≈ Dynamic

Binary Translation

• Seamless design of memory models with “black-
box” IP Blocks?

• Dynamic optimization regarding migration and
optimization of resources to use?

Our Research Goals

• How to verify the implementation of a memory
consistency model in a given processor pipeline?

• How to dynamically translate executing code from

one consistency model to another at runtime?
▫ Dynamic Consistency Model Translation ≈ Dynamic

Binary Translation

• Seamless design of memory models with “black-
box” IP Blocks?

• Dynamic optimization regarding migration and
optimization of resources to use?

Our Research Goals

Architecture-Level Analysis:
Happens-before Graphs

Litmus test:

Generally: A cycle implies that execution
is forbidden
(Intuition: instruction can’t happen
before itself)

Analysis:

Core 0 Core 1
(i1) st [x], 1
(i2) st [y], 2

(i3) ld [y]  r1
(i4) ld [x]  r2

TSO: Forbid r1=2, r2=0

i1

i2

i3

i4

PPO PPO

Reads from earlier
(“from-reads”)

[Alglave, FMSD ‘09]

Architecture vs. Implementation…

i1

i2

i3

i4

PPO PPO

Reads from earlier
(“from-reads”)

How is the consistency model enforced
at the microarchitecture level?
• Important events are distributed in

both space and time.

Writeback

Memory

Store
Buffer

Memory
Hierarchy

Loads
Execute

Decode

Fetch ?

PipeCheck Verification: Overview

• Model Specification +
• Automatic Analysis
=> Microarchitectural
equivalent of “happens-before”
graphs

Writeback

Memory

Store
Buffer

Memory
Hierarchy

Loads
Execute

Decode

Fetch

µ-Happens-Before Graphs

Execute stage maintains
relative ordering of

(i1) and (i2)

Decode stage maintains
relative ordering of

(i1) and (i2)

Fetch stage maintains
relative ordering of

(i1) and (i2) Locations
or Stages

in
Pipeline

Instructions

Fetch Stage

Decode Stage

Execute Stage

(i1)

Instruction (i1) flowing
through pipeline

(i2)
Program Order

µ-Happens-Before Graphs

Performs with respect
to remote cores

Locations
or Stages

in
Pipeline

Instructions

P

P

Memory
Stage

Store Buffer

P Cache/Memor
y

St [z] Ld [z]

Performs with respect
to issuing core

Performs with
respect to
all cores

 More Complex Cases

With a
µarch-level
view, special
exceptions
are no
longer
needed

• Pipelines modeled by specifying:
▫ list of stages
▫ list of possible paths through the pipeline
▫ set of “non-local edges” (details in poster)
▫ list of “performing locations”

PipeCheck Implementation Summary

Pipeline Lines of Code

Classic 5-Stage Pipeline
without Store Buffer 37

Classic 5-Stage Pipeline
with Store Buffer 62

gem5 O3 CPU Model 106
OpenSPARC T2 115

• Tool written in Coq and extracted to OCaml
▫ Open to future formal verification

• PipeCheck software verifies each pipeline
against suite of litmus tests and PPO tests
▫ Automatically enumerate all possible executions

(i.e. all possible graphs) for each pipeline model/
test pair

PipeCheck Implementation Summary

Observable Not
Observable

Permitted OK OK (µarch stricter
than necessary)

Forbidden Pipeline
bug!! OK

Verification Time

0.001

0.01

0.1

1

10

100

iw
p2

.3
a/

am
d4

iw
p2

.3
b1

rw
c-

un
fe

nc
ed n6

am
d3 n1

iw
p2

.2
/a

m
d2

iw
p2

.1
/a

m
d1 n5

iw
p2

.5
/a

m
d8

iw
p2

.4
/a

m
d9

am
d6

/I
R

IW
iw

p2
.6 n7 n2 n4

G
eo

m
ea

n

To
ol

 R
un

ti
m

e
(s

ec
)

Litmus Test

5-Stg. (no SB)
5-Stg. (w/SB)
gem5 O3
OpenSPARC T2

Litmus Test Results

1. Permitted results not
observable: pipeline
stronger than necessary

2. Forbidden results
observed: Found bugs in
pipeline!

Litmus Test Expected 5-Stage
w/o St. Buf

5-Stage
w/ St. Buf

gem5
O3

OpenSPARC
T2

iwp2.1/amd1 Forbid ✔ ✔ Observed
2 ✔

iwp2.2/amd2 Forbid ✔ ✔ ✔ ✔

iwp2.3a/amd4 Permit Not obs.1 ✔ ✔ ✔

iwp2.3b Permit ✔ ✔ ✔ ✔

iwp2.4/amd9 Permit Not obs. 1 ✔ ✔ ✔

iwp2.5/amd8 Forbid ✔ ✔ Observed
2 ✔

iwp2.6 Forbid ✔ ✔ ✔ ✔

amd3 Permit Not obs. 1 ✔ ✔ ✔

amd6 Forbid ✔ ✔ Observed
2 ✔

n1 Permit Not obs. 1 ✔ ✔ ✔

n2 Forbid ✔ ✔ Observed
2 ✔

n4 Forbid ✔ ✔ ✔ ✔

n5 Forbid ✔ ✔ ✔ ✔

n6 Permit ✔ ✔ ✔ ✔

n7 Permit Not obs. 1 ✔ ✔ ✔

rwc-unfenced Permit Not obs. 1 ✔ ✔ ✔

• ArMOR: Automatic translation from one memory
consistency model to another.
▫ Binary translation for *consistency model* differences, not

just ISA differences.
▫ Supports agile migration from one ISA+MCM to another

• Application-Aware Data Motion optimizations.
▫ Communication accelerators, not just computation

accelerators.

• Design Space Exploration
▫ Fast regression-based methods for estimating optimal hw

and sw design parameter choices in heterogeneous design
spaces.

Other Work…

• Heterogeneous parallelism is here and growing.
• Heterogeneity affects every aspect of our ability

to specify, verify, and building performance-
optimized parallel systems.

• Recent work: Specification + Automatic Analysis
▫ PipeCheck: Fast, automatic verification of

consistency implementations against their higher-
level architectural abstractions.

▫ ArMOR: Fast binary translation of executables
from one consistency model to another.

• Future: CPU + accelerator, cross-data-center, …

Conclusions

• Students on this project:
▫ Dan Lustig, Princeton
 2013 Intel Graduate Fellow

▫ Caroline Trippel, Princeton
• Collaboration with Dr. Michael Pellauer, Intel VSSAD,

Hudson, MA

• Related papers:
▫ “PipeCheck: Specifying and Verifying Microarchitectural

Enforcement of Memory Consistency Models” To Appear.
MICRO 2014.

▫ Other work in submission.

• Other ISTC-CC students
▫ Elba Garza, Tae Jun Ham, Wenhao Jia, Logan Stafman,

Ozlem Bilgir Yetim, Yavuz Yetim.

Acknowledgements & Collaborators

http://www.istc-cc.cmu.edu/

Margaret Martonosi
Princeton University

Hardware-Software Interface Issues in
Heterogeneous Systems: Design,
Verification, and Programming.

	Hardware-Software Interface Issues in Heterogeneous Systems: �Design, Verification, and Programming.
	Acknowledgements & Collaborators
	Heterogeneity: HW/SW Challenges
	Diverse processing resources�share data in memory…
	Consistency Models �& Preserved Program Order
	Our Research Goals
	Our Research Goals
	Architecture-Level Analysis:�Happens-before Graphs
	Architecture vs. Implementation…
	PipeCheck Verification: Overview
	µ-Happens-Before Graphs
	µ-Happens-Before Graphs
	 More Complex Cases
	PipeCheck Implementation Summary
	PipeCheck Implementation Summary
	Verification Time
	Litmus Test Results
	Other Work…
	Conclusions
	Acknowledgements & Collaborators
	Hardware-Software Interface Issues in Heterogeneous Systems: Design, Verification, and Programming.

