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Heterogeneity: HW/SW Challenges

Heterogeneous Parallelism:
Widespread, clear benefits:

e Specialization => high
perf-per-watt

e On-chip, On-Device,
Datacenters, Cloud...

e But programming model is weak:
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e.g., Intel Bay Trail SoC

= “1 CPU + peripheral devices” is nowhere near rich enough

for today’s complex processors and systems.

e Our Overall Focus: Programming models and
execution optimizations for Heterogeneous CMPs.

e One Specific Issue: Memory Consistency Models



Diverse processing resources
share data in memory...
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Memory consistency model: the set of rules on
the ordering and visibility of memory accesses

The Challenge: Memory Consistency models are as diverse as

the processors employing them!




Consistency Models

& Preserved Program Order

e Memory Consistency Models (MCMSs) set the
rules regarding which loads and stores may be
reordered relative to each other.
= E.g., Total Store Order (TSO) used by x86

e Other architectures make different (often much
weaker) ordering promises.
= E.g. GPUs make very weak ordering promises
= Even other CPU ISAs (IBM, ARM) make fairly

weak promises

 If “default” promise is weak,
programs/compilers use fence instructions to
provide ordering guarantees required by the
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Our Research Goals
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e How to verlfy the |mplementat|on of a memory
consistency model in a given processor pipeline?

 How to dynamically translate executing code from
one consistency model to another at runtime?

s Dynamic Consistency Model Translation = Dynamic
Binary Translation

e Seamless design of memory models with “black-
box” IP Blocks?

e Dynamic optimization regarding migration and
optimization of resources to use?
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Architecture-Level Analysis:

Happens-before Graphs
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Litmus test: Analysis:

Core O Corel
() st[x],1 | (13)Id[y]=>r1
(12)sty],2 | (14) Id [x] = r2
TSO: Forbid r1=2, r2=0

Generally: A cycle implies that execution

s forbidden Reads from earlier
(Intuition: instruction can’t happen

before itself) (“from-reads”)
[Alglave, FMSD ‘09]




Architecture vs. Implementation...

"

How is the consistency model enforced
at the microarchitecture level?

e Important events are distributed in
both space and time.
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PipeCheck Verification: Overview

e Model Specification +
e Automatic Analysis 4

=> Microarchitectural
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U-Happens-Before Graphs
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Fetch stage maintains
relative ordering of

Fetch Stage

Locations (i1) and (i2)

or Stages < Decode Stage —
: _ _ _ ecode stage maintains
IN Instruction (il1) flowing

- o relative ordering of
Pipeline through pipeline (i1) and (i2)

\Execute Stage

Xecute stage maintain
relative ordering of
(i1) and (i2)



U-Happens-Before Graphs
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More Complex Cases

With a

uarc h-level FetchStage
view, special  DecodeStage
exceptions ExecuteStage
are no MemoryStage
longer
needed

WritebackStage




PipeCheck Implementation Summary

A g —°5%—__
e Pipelines modeled by specifying:
= |ist of stages
= |ist of possible paths through the pipeline
s set of “non-local edges” (details in poster)
= |ist of “performing locations”

Pipeline Lines of Code
Classic 5-Stage Pipeline 37
without Store Buffer
Classic 5-Stage Pipeline 62

with Store Buffer

gem5 O3 CPU Model 106
OpenSPARC T2 115




PipeCheck Implementation Summary

e Tool written in Cog and extracted to OCaml
= Open to future formal verification

e PipeCheck software verifies each pipeline
against suite of litmus tests and PPO tests

= Automatically enumerate all possible executions
(1.e. all possible graphs) for each pipeline model/
test pair

Observable Not

Observable
Permitted OK OK (uarch stricter
than necessary)
Pipeline

Forbidden OK

bug!!
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Litmus Test Results

. 5-Stage 5-Stage gem5 OpenSPARC
Litmus Test  Expected ./ 'ci ‘B¢ w/ St Buf 03 T2
Observed 1. Permitted results not
iwp2.1/amdl Forbid v v 2 v ) . .
observable: pipeline
iwp2.3a/amd4 Permit Not obs.! v v v
iwp2.3b Permit v v v 4
wp2.4/amd9 | Permit | Notobs. v v v 2. Forbidden results
wp2.5/amds | Forbid y y Observed y opser_ved. Found bugs in
pipeline!
iwp2.6 Forbid v (4 4 4
amd3 Permit Not obs.! v v v
amd6 Forbid v v Observed v
nl Permit Not obs.! v "4 v
n2 Forbid v v Obsezr"ed v
n4 Forbid 4 v v v
n5 Forbid (V4 v v v
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rwc-unfenced Permit Not obs.! v v v




Other Work...

e ArMOR: Automatic translation from one memory
consistency model to another.

= Binary translation for *consistency model* differences, not
just ISA differences.

= Supports agile migration from one ISA+MCM to another

e Application-Aware Data Motion optimizations.

= Communication accelerators, not just computation
accelerators.

e Design Space Exploration

= Fast regression-based methods for estimating optimal hw
and sw design parameter choices in heterogeneous design
spaces.



Conclusions
e Heterogeneous parallelism is here and growing.
e Heterogenelty affects every aspect of our ability
to specify, verify, and building performance-
optimized parallel systems.

e Recent work: Specification + Automatic Analysis

s PipeCheck: Fast, automatic verification of
consistency implementations against their higher-
level architectural abstractions.

s ArMOR: Fast binary translation of executables
from one consistency model to another.

e Future: CPU + accelerator, cross-data-center, ...
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