

GraphLab: What's Next

Yucheng Low Chief Architect GraphLab

100 C

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing

A Tail of Two Projects

How Fast Can we Go?

Disk/SSD Graph Processing System

How Large Can we Go?

20B edges on one Laptop

100 Node Hadoop GraphChi Mac Mini PageRank

May 2013: GraphLab Co came into existence

Currently Proprietary, Open sourcing in near future.

From Inspiration To Production

Get v0.9.1 at http://graphlab.com/

Crossing the Big Data Chasm

Data scientist: inspiration to production

Prototype

Production

Use my laptop Variety of data Not toy data scales Language I love Iterate quickly

C

Monitor

GraphLab Create

Analyze big data on one machine graphs, tables, text, images in Python doesn't have to fit in memory

Distribute in production with same code on EC2, Yarn,...

GraphLab Canvas: Monitor & visualize from prototype to production

What folks are saying about GraphLab Create

"The ease of use and scalable performance, which is not limited by the memory of the machine, are allowing us to **innovate and advance at an astonishing pace**."

- Andrew Bruce, Senior Director, Data Science, Zillow

"Graphlab Create provides us with an end-to-end efficient framework ... both tabular and graph data generated by the activity of our users."

- Baldo Faeita, Social Computing Lead, Adobe Systems

Predictive Apps in Production

SFrame and SGraph Built by data scientists, for data scientists.

Building on decades of database and systems research.

SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation

Enabling users to easily and efficiently translate between both representations to get the best of both worlds.

SFrame Python API Example

SFrame Querying

Supports most typical SQL SELECT operations using a Pythonic syntax.

SQL

SELECT Book.title AS title, COUNT(*) AS authors
 FROM Book
 JOIN Book_author ON Book.isbn = Book_author.isbn
 GROUP BY Book.title;

SFrame Python

```
Book.join(Book_author, on='isbn')
.groupby('title', {'authors':gl.aggregate.COUNT})
```


SFrame Design

- Graceful Degradation as 1st principle
 - Disk/SSD backed
- Rich Datatypes
 - Strong schema types: int, double, string...
 - Weak schema types: list, dictionary

Columnar Architecture

- Easy feature engineering + Vectorized feature operations.
- Immutable columns + Lazy evaluation
- Statistics + visualization + sketches

Scales to >10K columns, Billions of rows on one machine.

SGraph

- **SFrame backed** graph representation. Inherits SFrame properties.
 - Data types, External Memory, Columnar, compression, etc.
- Layout optimized for batch **external memory computation**.
- GraphChi-inspired architecture, scales to billions of edges on one machine.

Deep Integration of SFrames and SGraphs

- Seamless interaction between graph data and table data.
- Queries can be performed easily across graph and tables.

Predictive Apps in Production

Most ML toolkits don't focus on the real challenges

Tools out there

Real needs

Bag of algorithms

GraphLab Create: Robust ML & graph analytics state-of-the-art scaling and accuracy focused on solving tasks, automatically

What We Have

Supervised Learning (Sparse/Dense regimes)

- Logistic Regression
- L1/L2 Reg. Linear Regression
- SVM
- Boosted Decision Trees
- Random Kitchen Sink of the above
- Hash Kernel of the above

Recommender

(Sparse/Dense feature regimes)

- Matrix Factorization
- Matrix Factorization w/ Features
- Factorization Machine
- Ranking version of all Factorization methods
- Item Similarity
 - Jacard
 - Pearson
 - Cosine

Internal Convex Solvers Text

- (Sparse/Dense regimes) •
- GD
- SGD
- FISTA
- LBFGS
- Newton
 Graph
- PageRank
- KCore
- CC
- Shortest Path
- Triangle Count
- Graph Color

Nearest Neighbor

(Sparse/Dense regimes)

- Brute Force
- Ball Tree
- LSH varieties

Topic Modeling

Clustering

- kMeans
- Hierarchical

Deep Learning

CUDA Accelerated NN

Sketching

- Hyperloglog
- SpaceSaving
- CountSketch
- Quantile

More Coming!

Scalable Machine Learning

Garbage In Garbage Out. - Unknown

Scalable Machine Learning

Garbage In Guidance Out. - Sethu Raman VP Eng. GraphLab

Recommender using matrix factorization

3.5B ratings 660M users ~ 1 hour

"...during my time as Zynga's lead architect for big data, I found my way to GraphLab. I was astounded at the **dramatic savings, on the order of 500x**..."

- Mohan Reddy, Chief Architect, The Hive LLC.

Amazon ratings data: 35M ratings, 6.6M users, 2.5M products Replicated synthetically WRT users to evaluate scaling

Finding influencers in the Live-Journal graph

GraphLab on 1 machine is 10x faster than Mahout on 16 machines

Logistic regression benchmark

Orders of magnitude faster

Scalable data structures Tables, graphs, text Robust ML algorithms GraphLab Canvas Data pipelines New ML algorithms More data types Predictive services Monitoring in production **SDK**

100+ companies participated in beta program Already used in production Extremely positive feedback

Every feature since March in response to customer requests Please keep them coming!

Commitment to open-source

- We have been committed to open-source for 6 years
 - PowerGraph, GraphChi,...
 - Our focus now is on GraphLab Create
- We are inspired by companies like MongoDB & ElasticSearch
 - Open-source core
 - Provide value-add tools, such as monitoring & management

Our users can be successful by just using open-source version

GraphLab Create: Unleashing data science from inspiration to production

Have we forgotten a family member?

How Fast Can we Go?

Disk/SSD graph processing System

How Large Can we Go?

Return of Distributed ML

Different Reasons to Distribute

- IO Bound ML
 - ex: 10TB of data, low compute per element
 - Batch Optimization, etc
 - Classical "Big Data" Tasks
- Compute Bound ML
 - Small working set (GBs), high compute
 - Probabilistic Inference, Non-Convex Optimization, etc.
 - Classical "Super Computer" Tasks

There is not one unique abstraction for Distributed ML

Faster? More Accurate?

Single Machine Implementation of Complex Algorithm

Distributed Implementation of Simple Algorithm

Matrix Factorization For Recommender

SGD

Gets Better Answers

Optimization

- Auto Stepsize Tuning
- AdaGrad and other varieties

Model

- user-item features w/quadratic interaction
- Adaptive Negative Sampling

ALS

Easy to Distribute

Many Things We Don't Know How to Distribute (well)

- Mixed Dense-Sparse Optimization (SGD?/Coordinate Descent?)
- High Order Tensor Factorization (Factorization Machine)
- Many Probabilistic Graphical Models
- etc.

Distributed ML API

Provide an architecture which enables GraphLab and other researchers to attack distributed ML.

"STL" for Distributed ML

Generic Data Structures

Traits

DMap<key, value> → Parameter Server DGraph<v,e> → PowerGraph DArray<value_type> → Data set DMultiMap<key, value> → ?Connection Machine?

SequentialReadable RandomReadable RandomWritable EventualConsistent etc. Generic Algorithms

copy for_each reduce transform vertex_apply

etc.

double AsyncSGD(gl::DArray<T> data) {

```
// a parameter server
gl::DMap<int, double> params;
while(1) {
 gl::for each(data, [](auto t) {
                      // modifies parameters
                      // asynchronously
                      update sgd step(params, t);
                     });
  auto loss = gl::reduce(data, [](auto t) {
                           return loss(params, t);
                          });
  if (converged(loss)) return loss;
```

Very Initial Work

Come chat if you are interested.

pip install graphlab-create

jobs@graphlab.com

@graphlabteam

