GraphLab: What’s Next

Yucheng Low
Chief Architect
GraphLab

http://www.istc-cc.cmu.edu/
A Tail of Two Projects

GraphLab

Distributed Graph Processing System

How Fast Can we Go?

- Hadoop
- Twister
- GraphLab

PageRank

1636 node Hadoop

Triangle Count

GraphLab

Disk/SSD Graph Processing System

How Large Can we Go?

- 20B edges on one Laptop
- 100 Node Hadoop
- GraphChi
- Mac Mini

PageRank
May 2013: **GraphLab Co** came into existence
From Inspiration To Production

Get v0.9.1 at http://graphlab.com/

Currently Proprietary, Open sourcing in near future.
Crossing the Big Data Chasm

Get a Hadoop Cluster!?!?

GraphLab Create
Unleashing data science from inspiration to production

scale of data

production data

single machine memory

speed of iteration
Data scientist: inspiration to production

Prototype

- Use my laptop
- Variety of data
- Not toy data scales
- Language I love
- Iterate quickly

Production

- Analyze big data on one machine
- graphs, tables, text, images
- in Python
- doesn’t have to fit in memory

- Distributed in production
 with same code
 on EC2, Yarn,…

Monitor

- Clean
- Learn
- Deploy
- Predictions

GraphLab Canvas: Monitor & visualize from prototype to production

GraphLab Create
What folks are saying about GraphLab Create

“The ease of use and scalable performance, which is not limited by the memory of the machine, are allowing us to innovate and advance at an astonishing pace.”

- Andrew Bruce, Senior Director, Data Science, Zillow

“Graphlab Create provides us with an end-to-end efficient framework … both tabular and graph data generated by the activity of our users.”

- Baldo Faeita, Social Computing Lead, Adobe Systems
SFrame and SGraph

Built by data scientists, for data scientists.

Building on decades of database and systems research.
SFrame: Scalable Tabular Data Manipulation

SGraph: Scalable Graph Manipulation
Enabling users to **easily** and **efficiently** translate between both representations to get the best of both worlds.
SFrame Python API Example

```python
# Make a little SFrame of 1 column and 5 values:
sf = gl.SFrame({'x': [1, 2, 3, 4, 5]})

# Normalizes the column x:
sf['x'] = sf['x'] / sf['x'].sum()

# Uses a python lambda to create a new column:
sf['x-squared'] = sf['x'].apply(lambda x: x*x)

# Create a new column using a vectorized operator:
sf['x-cubed'] = sf['x-squared'] * sf['x']

# Create a new SFrame taking only 2 of the columns:
sf2 = sf[['x', 'x-squared']]  
```
SFrame Querying

Supports most typical SQL SELECT operations using a Pythonic syntax.

SQL

```sql
SELECT Book.title AS title, COUNT(*) AS authors
FROM Book
JOIN Book_author ON Book.isbn = Book_author.isbn
GROUP BY Book.title;
```

SFrame Python

```python
Book.join(Book_author, on='isbn')
    .groupby('title', {'authors':gl.aggregate.COUNT})
```
SFrame Design

• Graceful Degradation as 1st principle
 • Disk/SSD backed

• Rich Datatypes
 • Strong schema types: int, double, string...
 • Weak schema types: list, dictionary

• Columnar Architecture
 • Easy feature engineering + Vectorized feature operations.
 • Immutable columns + Lazy evaluation
 • Statistics + visualization + sketches

Scales to >10K columns, Billions of rows on one machine.
Demo
SGraph

- **SFrame backed** graph representation. Inherits SFrame properties.
 - Data types, External Memory, Columnar, compression, etc.

- Layout optimized for batch **external memory computation**.

- GraphChi-inspired architecture, scales to billions of edges on one machine.
Deep Integration of SFrames and SGraphs

- Seamless interaction between graph data and table data.
- Queries can be performed easily across graph and tables.
Scalable Data Representation

Robust Machine Learning

Predictive Apps in Production

Prediction

Interaction
Most ML toolkits don’t focus on the real challenges

<table>
<thead>
<tr>
<th>Tools out there</th>
<th>Real needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bag of algorithms</td>
<td></td>
</tr>
</tbody>
</table>

GraphLab Create: Robust ML & graph analytics
state-of-the-art scaling and accuracy
focused on solving tasks, automatically
What We Have

Supervised Learning
(Sparse/Dense regimes)
- Logistic Regression
- L1/L2 Reg. Linear Regression
- SVM
- Boosted Decision Trees
- Random Kitchen Sink of the above
- Hash Kernel of the above

Internal Convex Solvers
(Sparse/Dense regimes)
- GD
- SGD
- FISTA
- LBFGS
- Newton

Recommender
(Sparse/Dense feature regimes)
- Matrix Factorization
- Matrix Factorization w/ Features
- Factorization Machine
- Ranking version of all Factorization methods

Text
- Topic Modeling

Clustering
- kMeans
- Hierarchical

Deep Learning
- CUDA Accelerated NN

Graph
- PageRank
- KCore
- CC
- Shortest Path
- Triangle Count
- Graph Color

Nearest Neighbor
(Sparse/Dense regimes)
- Brute Force
- Ball Tree
- LSH varieties

More Coming!
Scalable Machine Learning

Garbage In Garbage Out.

- Unknown
Scalable Machine Learning

Garbage In Guidance Out.

- Sethu Raman
 VP Eng. GraphLab
Recommender using matrix factorization

“...during my time as Zynga's lead architect for big data, I found my way to GraphLab. I was astounded at the **dramatic savings, on the order of 500x...**”

- Mohan Reddy, Chief Architect, The Hive LLC.

Amazon ratings data: 35M ratings, 6.6M users, 2.5M products
Replicated synthetically WRT users to evaluate scaling
Finding influencers in the Live-Journal graph

GraphLab on 1 machine is 10x faster than Mahout on 16 machines
Logistic regression benchmark

KDD Cup data: predict student performance on math problems based on interactions with tutoring system
8.4M data points, 20M features, 2.4GB compressed

Orders of magnitude faster
GraphLab Create Roadmap

- **March 2014**: GraphLab Create in beta
- **July 21st 2014**: GraphLab Create v0.9
- **October 2014**: GraphLab Create v1.0

Scalable data structures
- Tables, graphs, text
- Robust ML algorithms
- GraphLab Canvas
- Data pipelines

New ML algorithms
- More data types
- Predictive services
- Monitoring in production

SDK

100+ companies participated in beta program
- Already used in production
- Extremely positive feedback

Every feature since March in response to customer requests
Please keep them coming!
Commitment to open-source

• We have been committed to open-source for 6 years
 • PowerGraph, GraphChi,…
 • Our focus now is on GraphLab Create

• We are inspired by companies like MongoDB & ElasticSearch
 • Open-source core
 • Provide value-add tools, such as monitoring & management

Our users can be successful by just using open-source version
GraphLab Create:
Unleashing data science from inspiration to production
Have we forgotten a family member?

Distributed Graph Processing System

How Fast Can we Go?

Disk/SSD graph processing System

How Large Can we Go?
Return of Distributed ML
Different Reasons to Distribute

• IO Bound ML
 • ex: 10TB of data, low compute per element
 • Batch Optimization, etc
 • Classical “Big Data” Tasks

• Compute Bound ML
 • Small working set (GBs), high compute
 • Probabilistic Inference, Non-Convex Optimization, etc.
 • Classical “Super Computer” Tasks
There is not one unique abstraction for Distributed ML.

- Iterative Dataflow:
 - Hadoop
 - MapReduce
 - Spark
 - Logic Programming
 - Bloom

- Dense Iterative:
 - Supercomputer
 - Charm++

- Combinatorial BLAS

- GraphLab
Distributed Implementation of Simple Algorithm

Single Machine Implementation of Complex Algorithm

Matrix Factorization For Recommender

SGD
- Gets Better Answers
- **Optimization**
 - Auto Stepsize Tuning
 - AdaGrad and other varieties
- **Model**
 - user-item features w/quadratic interaction
 - Adaptive Negative Sampling

ALS
- Easy to Distribute

Faster? More Accurate?
Many Things We Don’t Know How to Distribute (well)

- Mixed Dense-Sparse Optimization (SGD?/Coordinate Descent?)
- High Order Tensor Factorization (Factorization Machine)
- Many Probabilistic Graphical Models
- etc.
Distributed ML API

Provide an architecture which enables GraphLab and other researchers to attack distributed ML.

“STL” for Distributed ML

Generic Data Structures

- DMap<key, value> → Parameter Server
- DGraph<v,e> → PowerGraph
- DArray<value_type> → Data set
- DMultiMap<key, value> → ?Connection Machine?
- etc.

Traits

- SequentialReadable
- RandomReadable
- RandomWritable
- EventualConsistent
- etc.

Generic Algorithms

- copy
- for_each
- reduce
- transform
- vertex_apply
- etc.
double AsyncSGD(gl::DArray<T> data) {
 // a parameter server
 gl::DMap<int, double> params;
 while(1) {
 gl::for_each(data, [](auto t) {
 // modifies parameters
 // asynchronously
 update_sgd_step(params, t);
 });
 auto loss = gl::reduce(data, [](auto t) {
 return loss(params, t);
 });
 if (converged(loss)) return loss;
 }
}
Very Initial Work

Come chat if you are interested.
pip install graphlab-create

jobs@graphlab.com

@graphlabteam