A Reliable Memory-Centric Distributed Storage System

Haoyuan (HY) Li, Ali Ghodsi, Matei Zaharia, Scott Shenker, Ion Stoica

September, 2014, ISTC @ Portland

http://www.istc-cc.cmu.edu/
Outline

• Overview
 – Feature 1: Memory Centric Storage Architecture
 – Feature 2: Lineage in Storage

• Challenges

• Open Source

• Future
Outline

• **Overview**
 – Feature 1: Memory Centric Storage Architecture
 – Feature 2: Lineage in Storage

• Challenges

• Open Source

• Future
Memory is **King**

- RAM throughput increasing **exponentially**
- Disk throughput increasing **slowly**

Memory-locality key to interactive response time
Realized by many...

- Frameworks already leverage memory

Spark

DBMS2

April 7, 2012

Many kinds of memory-centric data management

I’m frequently asked to generalize in some way about in-memory or memory-centric data management. I can start:

- The desire for human real-time interactive response naturally leads to...
Problem solved?
An Example: Spark

- Fast in-memory data processing framework
 - Keep **one** in-memory copy inside JVM
 - Track **lineage** of operations used to derive data
 - Upon failure, use lineage to recompute data
Issue 1

Data Sharing is the bottleneck in analytics pipeline:
Slow writes to disk

storage engine & execution engine same process (slow writes)
Issue 1

Data Sharing is the bottleneck in analytics pipeline: Slow writes to disk

storage engine & execution engine same process (slow writes)
Issue 2

Cache loss when process crashes.

execution engine & storage engine same process

Spark Task

Spark memory block manager

HDFS / Amazon S3
Issue 2

Cache loss when process crashes.

execution engine & storage engine same process

- Spark memory block manager
- HDFS / Amazon S3
Issue 2

Cache loss when process crashes.

execution engine & storage engine same process

HDFS / Amazon S3

block 1 block 2
block 3 block 4
Issue 3

In-memory Data Duplication & Java Garbage Collection

Execution engine & storage engine same process (duplication & GC)
Tachyon

Reliable data sharing at memory-speed within and across cluster frameworks/jobs
Solution Overview

Basic idea

• Feature 1: memory-centric storage architecture
• Feature 2: push lineage down to storage layer

Facts

• One data copy in memory
• Recomputation for fault-tolerance
Stack

Computation Frameworks
(Spark, MapReduce, Impala, H2O, ...)

Tachyon

Existing Storage Systems
(HDFS, S3, GlusterFS, ...)

Memory-Centric Storage Architecture
Lineage in Storage
Issue 1 revisited

Memory-speed data sharing among jobs in different frameworks

execution engine & storage engine same process (fast writes)
Issue 2 revisited

Keep in-memory data safe, even when a job crashes.

Execution engine & storage engine same process
Issue 2 revisited

Keep in-memory data safe, even when a job crashes.

execution engine &
storage engine
same process

crash
Spark memory
block manager

Tachyon
in-memory

HDFS / Amazon S3
Issue 2 revisited

Keep in-memory data safe, even when a job crashes.

execution engine & storage engine same process

Tachyon in-memory

HDFS / Amazon S3

block 1
block 3
block 4

block 1
block 2
block 3
block 4

crash
Issue 3 revisited

No in-memory data duplication, much less GC

execution engine & storage engine same process (no duplication & GC)
Outline

• Overview
 – Feature 1: Memory Centric Storage Architecture
 – Feature 2: Lineage in Storage

• Challenges

• Open Source

• Future
Question 1: How long to get missing data back?

That server contains the data computed last month!
Lineage enables **Asynchronous Checkpointing**
Edge Algorithm

- Checkpoint leaves
- Checkpoint hot files
- Bounded Recovery Cost
Question 2: How to allocate recomputation resource?

Would recomputation slow down my high priority jobs? Priority Inversion?
Recomputation Resource Allocation

- Priority Based Scheduler

- Fair Sharing Based Scheduler
Comparison with in Memory HDFS

Write Throughput

- **Tachyon Write**
- **MemHDFS Write**
- **Theoretical Replication (2 copies) Based Write**

Throughput (GB/Sec)

Number of Machines

0 10 20 30
Workflow Improvement

Performance comparison for realistic workflow. The workflow ran 4x faster on Tachyon than on MemHDFS. In case of node failure, applications in Tachyon still finishes 3.8x faster.
Further Improve Spark’s Performance

Grep Program
Recomputation Resource Consumption

<table>
<thead>
<tr>
<th>Bin</th>
<th>Tasks</th>
<th>% of Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 - 10</td>
<td>85%</td>
</tr>
<tr>
<td>2</td>
<td>11 - 50</td>
<td>4%</td>
</tr>
<tr>
<td>3</td>
<td>51 - 150</td>
<td>8%</td>
</tr>
<tr>
<td>4</td>
<td>151 - 500</td>
<td>2%</td>
</tr>
<tr>
<td>5</td>
<td>> 500</td>
<td>1%</td>
</tr>
</tbody>
</table>

Facebook Workload Analysis

Bing Workload Analysis
Outline

• Overview
 – Feature 1: Memory Centric Storage Architecture
 – Feature 2: Lineage in Storage

• Challenges

• Open Source

• Future
• Apache License 2.0, Version 0.5.0 (July 2014)

• Deployed at tens of companies

• 15+ Companies Contributing

• No code change for Spark and MapReduce applications.
Release Growth

Tachyon 0.1: -1 contributor
Tachyon 0.2: -3 contributors
Tachyon 0.3: -15 contributors
Tachyon 0.4: -30 contributors
Tachyon 0.5: -46 contributors

Dec '12 Apr '13 Oct '13 Feb '14 July '14
Open Community

- Berkeley Contributors
- Non-Berkeley Contributors
Thanks to our Code Contributors!

Aaron Davidson
Achal Soni
Ali Ghodsi
Andrew Ash
Anurag Khandelwal
Aslan Bekirov
Bill Zhao
Brad Childs
Calvin Jia
Chao Chen
Cheng Chang
Cheng Hao
Colin Patrick McCabe
David Capwell
David Zhu
Du Li
Fei Wang
Gerald Zhang
Grace Huang
Haoyuan Li
Henry Saputra
Hobin Yoon
Huamin Chen
Jey Kottalam
Joseph Tang
Juan Zhou
Lukasz Jastrzebski
Manu Goyal
Mark Hamstra
Mingfei Shi
Mubarak Seyed
Nick Lanham
Orcun Simsek
Pengfei Xuan
Qianhao Dong
Qifan Pu
Raymond Liu
Reynold Xin
Robert Metzger
Rong Gu
Sean Zhong
Seonghwan Moon
Shivaram Venkataraman
Srinivas Parayya
Tao Wang
Thu Kyaw
Timothy St. Clair
Vamsi Chitters
Xi Liu
Xiang Zhong
Xiaomin Zhang
Zhao Zhang
Tachyon is in Fedora 20

Thanks to Redhat!
Commercially supported by Atigeo and running in dozens of their customers' clusters
Tachyon is the Default Off-Heap Storage Solution for Spark
Today, data gets parsed and exchanged between Spark and H2O via Tachyon. Users can interactively query big data both via SQL and ML from within the same context.
Reaching wider communities: e.g. GlusterFS
Under Filesystem Choices (Big Data, Cloud, HPC, Enterprise)
Outline

• Overview
 – Feature 1: Memory Centric Storage Architecture
 – Feature 2: Lineage in Storage

• Challenges

• Open Source

• Future
Short Term Roadmap (0.6 Release)

• Ceph Integration (Ceph Community)

• Hierarchical Local Storage (Intel)

• Performance Improvement (Yahoo)

• Multi-tenancy (AMPLab)

• Mesos Integration (Mesos Community)

• Many more from AMPLab and Industry Collaborators.
Features

• Memory Centric Storage Architecture
• Lineage in Storage (alpha)
• Hierarchical Local Storage
• Data Serving
• Scalable metadata management
• Different hardware
• More...
• Your Requirements?
Data Serving: An Example

Data Analytics Pipeline:
Query the results of batch jobs.
What do we need?

Sequential I/O + Random Access!
Tachyon Goal?
Better Assist Other Components

Welcome Collaboration!
Thanks!
Questions?

• More Information:
 – Website: http://tachyon-project.org
 – Github: https://github.com/amplab/tachyon
 – Meetup: http://www.meetup.com/Tachyon
• Email: haoyuan@cs.berkeley.edu