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Graphs are Central to Analytics 
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Update ranks in parallel  

Iterate until convergence 

Rank of 
user i Weighted sum of 

neighbors’ ranks 
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PageRank: Identifying 
Leaders 
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Conditional Random Field 
Belief Propagation 



The Graph-Parallel Pattern 
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Model / Alg.  
State 

Computation depends 
only on the neighbors 



Many Graph-Parallel Algorithms 
• Collaborative Filtering 

– Alternating Least Squares 
– Stochastic Gradient 

Descent 
– Tensor Factorization 

• Structured Prediction 
– Loopy Belief Propagation 
– Max-Product Linear 

Programs 
– Gibbs Sampling 

• Semi-supervised ML 
– Graph SSL  

– CoEM 
• Community Detection 

– Triangle-Counting 
– K-core Decomposition 
– K-Truss 

• Graph Analytics 
– PageRank 
– Personalized PageRank 
– Shortest Path 
– Graph Coloring 

• Classification 
– Neural Networks 6 
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Graph-Parallel Systems 
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oogle 

Expose specialized APIs to simplify 
graph programming. 



“Think like a 
Vertex.” 

- Pregel [SIGMOD’10] 
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The Pregel (Push) Abstraction 
Vertex-Programs interact by sending messages. 

i Pregel_PageRank(i, messages) :  
  // Receive all the messages 
  total = 0 
  foreach( msg in messages) : 
    total = total + msg 
 
  // Update the rank of this vertex 
  R[i] = 0.15 + total 
 
  // Send new messages to neighbors 
  foreach(j in out_neighbors[i]) : 
    Send  msg(R[i]) to vertex j 

9 Malewicz et al. [PODC’09, SIGMOD’10] 



Barrier 
Iterative Bulk Synchronous 

Execution 
Compute Communicate 



Graph-Parallel Systems 
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oogle 

Expose specialized APIs to simplify 
graph programming. 

 
Exploit graph structure to achieve 

orders-of-magnitude performance gains 
over more general  

data-parallel systems  



PageRank on the Live-Journal Graph 

22 

354 

1340 
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Naïve Spark

Mahout/Hadoop

Runtime (in seconds, PageRank for 10 iterations) 

Spark is 4x faster than Hadoop 
GraphLab is 16x faster than Spark 



Graph Analytics Pipeline 
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Tables 
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Graphs 
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Separate Systems to Support Each 
View 

Table View Graph View 

Dependency 
Graph 
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Having separate systems  
for each view is  

difficult to use and 
inefficient 
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Difficult to Program and Use 

Users must Learn, Deploy, and 
Manage multiple systems 

 
 
 

Leads to brittle and often  
complex interfaces 
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Inefficient 

20 

Extensive data movement and duplication across  
the network and file system 

< / > < / > < / > 
XML 

HDFS HDFS HDFS HDFS 

Limited reuse internal data-structures  
across stages 



GraphX Solution: Tables and Graphs 
are  

views of the same physical data 

GraphX Unified 
Representation 

Graph View Table View 

Each view has its own operators that  
exploit the semantics of the view  

to achieve efficient execution 



Graphs  Relational 
Algebra 

1. Encode graphs as distributed tables 

2. Express graph computation in relational 
algebra 

3. Recast graph systems optimizations as: 
1. Distributed join optimization 
2. Incremental materialized maintenance 

Integrate Graph and 
Table data 

processing systems. 

Achieve performance 
parity with 

specialized systems. 



Part. 2 
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Table Operators 
Table operators are inherited from Spark: 
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map 

filter 

groupBy 

sort 

union 

join 

leftOuterJoin 

rightOuterJoin 

reduce 

count 

fold 

reduceByKey 

groupByKey 

cogroup 

cross 

zip 

sample 

take 

first 

partitionBy 

mapWith 

pipe 

save 

... 



class Graph [ V, E ] { 
   def Graph(vertices: Table[ (Id, V) ],  
             edges: Table[ (Id, Id, E) ]) 
 // Table Views ----------------- 
 def vertices: Table[ (Id, V) ] 
 def edges: Table[ (Id, Id, E) ] 
 def triplets: Table [ ((Id, V), (Id, V), E) ] 
 // Transformations ------------------------------ 
 def reverse: Graph[V, E] 
 def subgraph(pV: (Id, V) => Boolean,  
                pE: Edge[V,E] => Boolean): Graph[V,E] 
 def mapV(m: (Id, V) => T ): Graph[T,E]  
 def mapE(m: Edge[V,E] => T ): Graph[V,T] 
 // Joins ---------------------------------------- 
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E ] 
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)] 
 // Computation ---------------------------------- 
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)], 
       reduceF: (T, T) => T): Graph[T, E] 
} 
 

Graph Operators 

25 



Triplets Join Vertices and 
Edges 

The triplets operator joins vertices and 
edges: 

The mrTriplets operator sums adjacent 
triplets. SELECT t.dstId, reduce( map(t) ) AS sum  
FROM triplets AS t GROUPBY t.dstId 

Triplets Vertices 
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SELECT s.Id, d.Id, s.P, e.P, d.P 
FROM edges AS e 
JOIN vertices AS s, vertices AS d 
ON e.srcId = s.Id AND e.dstId = d.Id 



We express enhanced Pregel and 
GraphLab  

abstractions using the GraphX operators 
in less than 50 lines of code! 
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SYSTEM DESIGN 
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Reduction in 
Communication Due to 

Cached Updates 
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Connected Components on Twitter Graph 

Most vertices are within 8 hops 
of all vertices in their comp. 



Benefit of Indexing Active 
Edges 
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Join Elimination 
Identify and bypass joins for unused triplet 
fields 
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PageRank on Twitter Three Way Join

Join Elimination

Factor of 2 reduction in communication 

sendMsg(ij, R[i], R[j], E[i,j]): 
  // Compute single message 
  return msg(R[i]/E[i,j]) 
    



Additional Query 
Optimizations 

Indexing and Bitmaps: 
»To accelerate joins across graphs 
»To efficiently construct sub-graphs 

Substantial Index and Data Reuse: 
»Reuse routing tables across graphs and sub-

graphs 
»Reuse edge adjacency information and indices 
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The GraphX Stack 
(Lines of Code) 

GraphX (3575) 

Spark 

Pregel (28) + GraphLab (50) 

PageRan
k (5) 

Connected 
Comp. (10) 

Shortest 
Path 
(10) 

ALS 
(40) LDA 

(120) 

K-core 
(51) 

Triangl
e 

Count 
(45) 

SVD 
(40) 



Performance Comparisons 

22 

68 
207 

354 
1340 

0 200 400 600 800 1000 1200 1400 1600

GraphLab
GraphX
Giraph

Naïve Spark
Mahout/Hadoop

Runtime (in seconds, PageRank for 10 iterations) 

GraphX is roughly 3x slower than GraphLab 

Live-Journal: 69 Million Edges 



GraphX scales to larger 
graphs 
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GraphX is roughly 2x slower than GraphLab 
»Scala + Java overhead: Lambdas, GC time, … 
»No shared memory parallelism: 2x increase in comm. 

Twitter Graph: 1.5 Billion Edges 



GraphX scales to larger 
graphs 
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PageRank is just one 
stage….     

 
      What about a pipeline? 



Example Analytics Pipeline 
// Load raw data tables 

val articles = sc.textFile(“hdfs://wiki.xml”).map(parserV) 

val links = articles.flatMap(xmlLinkParser) 

// Build the graph from tables 

val graph = new Graph(articles, links) 

// Run PageRank Algorithm 

val pr = graph.PageRank(tol = 1.0e-5) 

// Extract and print the top 20 articles 

val topArticles = articles.join(pr).top(20).collect 

for ((article, pageRank) <- topArticles) { 
  println(article.title + ‘\t’ + pageRank) 
} 



HDFS HDFS 

Compute Spark Preprocess Spark Post. 

A Small Pipeline in GraphX 

Timed end-to-end GraphX is faster than 
GraphLab 
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Status 
Part of Apache Spark 

 

  

 

 

 

In production at Alibaba Taobao 



GraphX: Unified Analytics 

Enabling users to easily and efficiently 
express the entire graph analytics 

pipeline 

New API 
Blurs the distinction 
between Tables and 

Graphs 

New System 
Combines Data-Parallel 
Graph-Parallel Systems 



Thanks You 

jegonzal@eecs.berkeley.edu 
 

http://amplab.cs.berkeley.edu/projects/gra
phx/ 

 

Reynold 
Xin 

Ankur 
Dave 

Daniel 
Crankshaw 

Michael 
Franklin 

Ion 
Stoica 

mailto:jegonzal@eecs.berkeley.edu
mailto:dcrankshaw@eecs.berkeley.edu
http://amplab.github.io/graphx/
http://amplab.github.io/graphx/

	GraphX: �Unifying Table and  Graph Analytics 
	Graphs are Central to Analytics
	PageRank: Identifying Leaders
	Predicting User Behavior
	The Graph-Parallel Pattern
	Many Graph-Parallel Algorithms
	Graph-Parallel Systems
	Slide Number 8
	The Pregel (Push) Abstraction
	Iterative Bulk Synchronous Execution
	Graph-Parallel Systems
	Slide Number 12
	Graph Analytics Pipeline
	Tables
	Graphs
	Separate Systems to Support Each View
	Having separate systems �for each view is �difficult to use and inefficient
	Difficult to Program and Use
	Inefficient
	GraphX Solution: Tables and Graphs are �views of the same physical data
	Graphs  Relational Algebra
	Distributed Graphs as Distributed Tables
	Table Operators
	Graph Operators
	Triplets Join Vertices and Edges
	We express enhanced Pregel and GraphLab �abstractions using the GraphX operators�in less than 50 lines of code!
	System Design
	Caching for Iterative mrTriplets
	Slide Number 33
	Slide Number 34
	Reduction in Communication Due to Cached Updates
	Benefit of Indexing Active Edges
	Join Elimination
	Additional Query Optimizations
	The GraphX Stack�(Lines of Code)
	Performance Comparisons
	GraphX scales to larger graphs
	GraphX scales to larger graphs
	PageRank is just one stage….    ��      What about a pipeline?
	Example Analytics Pipeline
	A Small Pipeline in GraphX
	Status
	GraphX: Unified Analytics
	Thanks You

