

GraphX: Unifying Table and Graph Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Ankur Dave, Daniel Crankshaw, Michael Franklin, and Ion Stoica

http://www.istc-cc.cmu.edu/

Intel Science & Technology Center for Cloud Computing

Graphs are Central to Analytics

PageRank: Identifying Leaders

Update ranks in parallel

Iterate until convergence

Predicting User Behavior

Conditional Random Field Belief Propagation

Post

Post

Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient
 Descent
- MACHINE
 Structured Prediction
 - LEARNING

Programs

- Gibbs Sampling
- Semi-supervised ML

– Graph SSL

- COEM SOCIAL NETWORK

- K-core Decomposition
- K-Truss
- **Graph Analytics**
 - Pageraph
 GRAPH
 Personalized PageRank
 ALGORITHMS
 - Graph Coloring
- Classification
 - Neural Networks

Expose specialized APIs to simplify graph programming.

"Think like a Vertex." - Pregel [SIGMOD'10]

The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) :
 // Receive all the messages
 total = 0
foreach( msg in messages) :
   total = total + msg
 // Update the rank of this vertex
 R[i] = 0.15 + total
 // Send new messages to neighbors
foreach(j in out_neighbors[i]) :
   Send msg(R[i]) to vertex j
```


Malewicz et al. [PODC'09, SIGMOD'10]

Iterative Bulk Synchronous Execution

Expose specialized APIs to simplify graph programming.

Exploit graph structure to achieve orders-of-magnitude performance gains over more general data-parallel systems

PageRank on the Live-Journal Graph

Runtime (in seconds, PageRank for 10 iterations)

Spark is 4x faster than Hadoop GraphLab is 16x faster than Spark

Tables

Graphs

Having separate systems for each view is difficult to use and inefficient

Difficult to Program and Use

Users must *Learn*, *Deploy*, and *Manage* multiple systems

Leads to brittle and often complex interfaces

Inefficient

Extensive data movement and duplication across the network and file system

Limited reuse internal data-structures across stages

GraphX Solution: Tables and Graphs are

views of the same physical data

Each view has its own operators that exploit the semantics of the view to achieve efficient execution

Graphs → Relational Algebra

- 1. Encode graphs as distributed tables
- 2. Express graph computation in relational algebra
- 3. Recast graph systems optimizations as:
 - 1. Distributed join optimization
 - 2. Incremental materialized maintenance

Integrate Graph and Table data processing systems. Achieve performance parity with specialized systems.

Table Operators

Table operators are inherited from Spark:

map	reduce	sampl e
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
uni on	groupByKey	mapWith
j oi n	cogroup	pi pe
leftOuterJoin	cross	save
ri ght0uterJoi n	zip	• • •

Graph Operators

class Graph [V, E] { def Graph(vertices: Table[(Id, V)], edges: Table[(Id, Id, E)]) def vertices: Table (Id, V)] def edges: Table[(Id, Id, E)] def triplets: Table [((Id, V), (Id, V), E)] def reverse: Graph V, E def **subgraph**(pV: (*Id*, *V*) => *Boolean*, pE: *Edge*[*V*, *E*] => *Boolean*): *Graph*[*V*, *E*] def mapV(m: (Id, V) = T): Graph[T, E] def mapE(m: Edge[V, E] => T): Graph[V, T]def joinV(tbl: *Table* [(*Id*, *T*)]): *Graph*[(*V*, *T*), *E*] def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)] def mrTriplets(mapF: (Edge[V, E]) => List[(Id, T)],reduceF: (T, T) => T: Graph [T, E]

Triplets Join Vertices and Edges The *triplets* operator joins vertices and es: EVECT^ss.Id, d.Id, islets, e.P, d.P Edges FROM edges AS JOIN Sertices AS sprentices ASA ON estcld = s.lo AND .dstld ≠B The *mariplets* operate sums adjacent iplets. ELECT t.dstld, reduce(map(t)) AS sum FROM triplets AS t GROUPBY t.dstld

We express *enhanced* Pregel and GraphLab abstractions using the GraphX operators in less than 50 lines of code!

SYSTEM DESIGN

Caching for Iterative mrTriplets

Aggregation for Iterative mrTriplets

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

Join Elimination

Identify and bypass joins for unused triplet

fields sendMsg(i→j, R[i], R[j], E[i,j]): // Compute single message return msg(R[i]/E[i,j])

37

Additional Query Optimizations

Indexing and Bitmaps:

- » To accelerate joins across graphs
- » To efficiently construct sub-graphs

Substantial Index and Data Reuse:

- »Reuse routing tables across graphs and subgraphs
- »Reuse edge adjacency information and indices

The GraphX Stack (Lines of Code)

GraphX (3575)

Spark

Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

GraphX scales to larger graphs Twitter Graph: 1.5 Billion Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab

» Scala + Java overhead: Lambdas, GC time, ...

»No shared memory parallelism: 2x increase in comm.

GraphX scales to larger graphs Twitter Graph: 1.5 Billion Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab »Scala + Java overhead: Lambdas, GC time, ... »No shared memory parallelism: 2x increase in comm.

PageRank is just one stage....

What about a pipeline?

Example Analytics Pipeline

// Load raw data tables

val articles = sc.textFile("hdfs://wiki.xml").map(parserV)

val links = articles.flatMap(xmlLinkParser)

- // Build the graph from tables
- val graph = new Graph(articles, links)
- // Run PageRank Algorithm
- **val** pr = graph.PageRank(tol = 1.0e-5)
- // Extract and print the top 20 articles

val topArticles = articles.join(pr).top(20).collect

```
for ((article, pageRank) <- topArticles) {
   println(article.title + '\t' + pageRank)</pre>
```

A Small Pipeline in GraphX

Timed end-to-end GraphX is *faster* than

Status

Part of Apache Spark

In production at Alibaba Taobao

GraphX: Unified Analytics

New API Blurs the distinction between Tables and Graphs

New System Combines Data-Parallel Graph-Parallel Systems

GraphLab

Enabling users to easily and efficiently express the entire graph analytics pipeline

Thanks You http://amplab.cs.berkeley.edu/projects/gra jegonzal@e

Reynold Xin

Ankur Dave

Daniel Crankshaw

Michael Franklin

Ion Stoica