
http://www.istc-cc.cmu.edu/

GraphX:
Unifying Table and Graph Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Ankur
Dave, Daniel Crankshaw, Michael
Franklin, and Ion Stoica

Graphs are Central to Analytics

Raw
Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Page
Title PR

Text
Table
Title Body

Topic Model
(LDA) Word Topics

Word Topic

Editor Graph
Community
Detection

User
Community

User Com.

Term-Doc
Graph

Discussion
Table

User Disc.

Community
Topic

Topic Com.

Update ranks in parallel

Iterate until convergence

Rank of
user i Weighted sum of

neighbors’ ranks

3

PageRank: Identifying
Leaders

Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Predicting User Behavior

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
?

?

? ?
?

?

?

?
?

?
?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

4

Conditional Random Field
Belief Propagation

The Graph-Parallel Pattern

5

Model / Alg.
State

Computation depends
only on the neighbors

Many Graph-Parallel Algorithms
• Collaborative Filtering

– Alternating Least Squares
– Stochastic Gradient

Descent
– Tensor Factorization

• Structured Prediction
– Loopy Belief Propagation
– Max-Product Linear

Programs
– Gibbs Sampling

• Semi-supervised ML
– Graph SSL

– CoEM
• Community Detection

– Triangle-Counting
– K-core Decomposition
– K-Truss

• Graph Analytics
– PageRank
– Personalized PageRank
– Shortest Path
– Graph Coloring

• Classification
– Neural Networks 6

MACHINE
LEARNING

SOCIAL NETWORK
ANALYSIS

GRAPH
ALGORITHMS

Graph-Parallel Systems

7

oogle

Expose specialized APIs to simplify
graph programming.

“Think like a
Vertex.”

- Pregel [SIGMOD’10]

8

The Pregel (Push) Abstraction
Vertex-Programs interact by sending messages.

i Pregel_PageRank(i, messages) :
 // Receive all the messages
 total = 0
 foreach(msg in messages) :
 total = total + msg

 // Update the rank of this vertex
 R[i] = 0.15 + total

 // Send new messages to neighbors
 foreach(j in out_neighbors[i]) :
 Send msg(R[i]) to vertex j

9 Malewicz et al. [PODC’09, SIGMOD’10]

Barrier
Iterative Bulk Synchronous

Execution
Compute Communicate

Graph-Parallel Systems

11

oogle

Expose specialized APIs to simplify
graph programming.

Exploit graph structure to achieve

orders-of-magnitude performance gains
over more general

data-parallel systems

PageRank on the Live-Journal Graph

22

354

1340

0 200 400 600 800 1000 1200 1400 1600

GraphLab

Naïve Spark

Mahout/Hadoop

Runtime (in seconds, PageRank for 10 iterations)

Spark is 4x faster than Hadoop
GraphLab is 16x faster than Spark

Graph Analytics Pipeline

Raw
Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Page
Title PR

Text
Table
Title Body

Topic Model
(LDA) Word Topics

Word Topic

Editor Graph
Community
Detection

User
Community

User Com.

Term-Doc
Graph

Discussion
Table

User Disc.

Community
Topic

Topic Com.

Tables

Raw
Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Page
Title PR

Text
Table
Title Body

Topic Model
(LDA) Word Topics

Word Topic

Editor Graph
Community
Detection

User
Community

User Com.

Term-Doc
Graph

Discussion
Table

User Disc.

Community
Topic

Topic Com.

Graphs

Raw
Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Page
Title PR

Text
Table
Title Body

Topic Model
(LDA) Word Topics

Word Topic

Editor Graph
Community
Detection

User
Community

User Com.

Term-Doc
Graph

Discussion
Table

User Disc.

Community
Topic

Topic Com.

Separate Systems to Support Each
View

Table View Graph View

Dependency
Graph

Table

Resul
t

Row

Row

Row

Row

Having separate systems
for each view is

difficult to use and
inefficient

18

Difficult to Program and Use

Users must Learn, Deploy, and
Manage multiple systems

Leads to brittle and often
complex interfaces

19

Inefficient

20

Extensive data movement and duplication across
the network and file system

< / > < / > < / >
XML

HDFS HDFS HDFS HDFS

Limited reuse internal data-structures
across stages

GraphX Solution: Tables and Graphs
are

views of the same physical data

GraphX Unified
Representation

Graph View Table View

Each view has its own operators that
exploit the semantics of the view

to achieve efficient execution

Graphs  Relational
Algebra

1. Encode graphs as distributed tables

2. Express graph computation in relational
algebra

3. Recast graph systems optimizations as:
1. Distributed join optimization
2. Incremental materialized maintenance

Integrate Graph and
Table data

processing systems.

Achieve performance
parity with

specialized systems.

Part. 2

Part. 1

Vertex
Table

B C

A D

F E

A D

Distributed Graphs as Distributed
Tables

D

Property Graph

B C

D

E

A A

F

Edge
Table

A B

A C

C D

B C

A E

A F

E F

E D

B

C

D

E

A

F

Routing
Table

B

C

D

E

A

F

1

2

1 2

1 2

1

2

2D Vertex Cut Heuristic

Table Operators
Table operators are inherited from Spark:

24

map

filter

groupBy

sort

union

join

leftOuterJoin

rightOuterJoin

reduce

count

fold

reduceByKey

groupByKey

cogroup

cross

zip

sample

take

first

partitionBy

mapWith

pipe

save

...

class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)],
 edges: Table[(Id, Id, E)])
 // Table Views -----------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table [((Id, V), (Id, V), E)]
 // Transformations ------------------------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,
 pE: Edge[V,E] => Boolean): Graph[V,E]
 def mapV(m: (Id, V) => T): Graph[T,E]
 def mapE(m: Edge[V,E] => T): Graph[V,T]
 // Joins --
 def joinV(tbl: Table [(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
 // Computation ----------------------------------
 def mrTriplets(mapF: (Edge[V,E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]
}

Graph Operators

25

Triplets Join Vertices and
Edges

The triplets operator joins vertices and
edges:

The mrTriplets operator sums adjacent
triplets. SELECT t.dstId, reduce(map(t)) AS sum
FROM triplets AS t GROUPBY t.dstId

Triplets Vertices

B

A

C

D

Edges

A B

A C

B C

C D

A B A

B A C

B C

C D

SELECT s.Id, d.Id, s.P, e.P, d.P
FROM edges AS e
JOIN vertices AS s, vertices AS d
ON e.srcId = s.Id AND e.dstId = d.Id

We express enhanced Pregel and
GraphLab

abstractions using the GraphX operators
in less than 50 lines of code!

28

SYSTEM DESIGN

Vertex
Table
(RDD)

Caching for Iterative mrTriplets
Edge Table

(RDD)
A B

A C

C D

B C

A E

A F

E F

E D

Mirror
Cache

B

C

D

A

Mirror
Cache

D

E

F

A

B

C

D

E

A

F

B

C

D

E

A

F

A

D

Vertex
Table
(RDD)

Edge Table
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

Mirror
Cache

B

C

D

A

Mirror
Cache

D

E

F

A

Incremental Updates for Iterative
mrTriplets

B

C

D

E

A

F

Change A A

Change E

S
can

Vertex
Table
(RDD)

Edge Table
(RDD)

A B

A C

C D

B C

A E

A F

E F

E D

Mirror
Cache

B

C

D

A

Mirror
Cache

D

E

F

A

Aggregation for Iterative mrTriplets

B

C

D

E

A

F

Change

Change

S
can

Change

Change

Change

Change

Local
Aggregate

Local
Aggregate

B
C

D

F

Reduction in
Communication Due to

Cached Updates

0.1

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

N
et

w
or

k
C

om
m

. (
M

B
)

Iteration

Connected Components on Twitter Graph

Most vertices are within 8 hops
of all vertices in their comp.

Benefit of Indexing Active
Edges

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14 16

R
un

tim
e

(S
ec

on
ds

)

Iteration

Connected Components on Twitter Graph

Scan

Indexed

Scan All Edges

Index of “Active” Edges

Join Elimination
Identify and bypass joins for unused triplet
fields

37

0
2000
4000
6000
8000

10000
12000
14000

0 5 10 15 20

C
om

m
un

ic
at

io
n

(M
B

)

Iteration

PageRank on Twitter Three Way Join

Join Elimination

Factor of 2 reduction in communication

sendMsg(ij, R[i], R[j], E[i,j]):
 // Compute single message
 return msg(R[i]/E[i,j])

Additional Query
Optimizations

Indexing and Bitmaps:
»To accelerate joins across graphs
»To efficiently construct sub-graphs

Substantial Index and Data Reuse:
»Reuse routing tables across graphs and sub-

graphs
»Reuse edge adjacency information and indices

38

The GraphX Stack
(Lines of Code)

GraphX (3575)

Spark

Pregel (28) + GraphLab (50)

PageRan
k (5)

Connected
Comp. (10)

Shortest
Path
(10)

ALS
(40) LDA

(120)

K-core
(51)

Triangl
e

Count
(45)

SVD
(40)

Performance Comparisons

22

68
207

354
1340

0 200 400 600 800 1000 1200 1400 1600

GraphLab
GraphX
Giraph

Naïve Spark
Mahout/Hadoop

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

Live-Journal: 69 Million Edges

GraphX scales to larger
graphs

249

419

596

3098

0 500 1000 1500 2000 2500 3000

GraphLab

GraphX

Giraph

Spark

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab
»Scala + Java overhead: Lambdas, GC time, …
»No shared memory parallelism: 2x increase in comm.

Twitter Graph: 1.5 Billion Edges

GraphX scales to larger
graphs

442
249

419
596

3098

0 500 1000 1500 2000 2500 3000

GraphLab +NoSHM
GraphLab

GraphX
Giraph
Spark

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab
»Scala + Java overhead: Lambdas, GC time, …
»No shared memory parallelism: 2x increase in comm.

Twitter Graph: 1.5 Billion Edges

PageRank is just one
stage….

 What about a pipeline?

Example Analytics Pipeline
// Load raw data tables

val articles = sc.textFile(“hdfs://wiki.xml”).map(parserV)

val links = articles.flatMap(xmlLinkParser)

// Build the graph from tables

val graph = new Graph(articles, links)

// Run PageRank Algorithm

val pr = graph.PageRank(tol = 1.0e-5)

// Extract and print the top 20 articles

val topArticles = articles.join(pr).top(20).collect

for ((article, pageRank) <- topArticles) {
 println(article.title + ‘\t’ + pageRank)
}

HDFS HDFS

Compute Spark Preprocess Spark Post.

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than
GraphLab

Raw Wikipedia

< / > < / > < / >
XML

Hyperlinks PageRank Top 20 Pages

342

1492

0 200 400 600 800 1000 1200 1400 1600

GraphLab + Spark
GraphX

Giraph + Spark
Spark

Total Runtime (in Seconds)

605

375

Status
Part of Apache Spark

In production at Alibaba Taobao

GraphX: Unified Analytics

Enabling users to easily and efficiently
express the entire graph analytics

pipeline

New API
Blurs the distinction
between Tables and

Graphs

New System
Combines Data-Parallel
Graph-Parallel Systems

Thanks You

jegonzal@eecs.berkeley.edu

http://amplab.cs.berkeley.edu/projects/gra
phx/

Reynold
Xin

Ankur
Dave

Daniel
Crankshaw

Michael
Franklin

Ion
Stoica

mailto:jegonzal@eecs.berkeley.edu
mailto:dcrankshaw@eecs.berkeley.edu
http://amplab.github.io/graphx/
http://amplab.github.io/graphx/

	GraphX: �Unifying Table and Graph Analytics
	Graphs are Central to Analytics
	PageRank: Identifying Leaders
	Predicting User Behavior
	The Graph-Parallel Pattern
	Many Graph-Parallel Algorithms
	Graph-Parallel Systems
	Slide Number 8
	The Pregel (Push) Abstraction
	Iterative Bulk Synchronous Execution
	Graph-Parallel Systems
	Slide Number 12
	Graph Analytics Pipeline
	Tables
	Graphs
	Separate Systems to Support Each View
	Having separate systems �for each view is �difficult to use and inefficient
	Difficult to Program and Use
	Inefficient
	GraphX Solution: Tables and Graphs are �views of the same physical data
	Graphs  Relational Algebra
	Distributed Graphs as Distributed Tables
	Table Operators
	Graph Operators
	Triplets Join Vertices and Edges
	We express enhanced Pregel and GraphLab �abstractions using the GraphX operators�in less than 50 lines of code!
	System Design
	Caching for Iterative mrTriplets
	Slide Number 33
	Slide Number 34
	Reduction in Communication Due to Cached Updates
	Benefit of Indexing Active Edges
	Join Elimination
	Additional Query Optimizations
	The GraphX Stack�(Lines of Code)
	Performance Comparisons
	GraphX scales to larger graphs
	GraphX scales to larger graphs
	PageRank is just one stage…. �� What about a pipeline?
	Example Analytics Pipeline
	A Small Pipeline in GraphX
	Status
	GraphX: Unified Analytics
	Thanks You

