GraphX:

Unifying Table and Graph Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Ankur Dave, Daniel Crankshaw, Michael Franklin, and Ion Stoica

http://www.istc-cc.cmu.edu/
Graphs are Central to Analytics
PageRank: Identifying Leaders

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

- Rank of user \(i \)
- Weighted sum of neighbors’ ranks

Update ranks in parallel
Iterate until convergence
Predicting User Behavior

Conditional Random Field
Belief Propagation
Computation depends only on the **neighbors**
Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient Descent
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
- Social Network Analysis
 - CoEM
 - Community Detection
 - Triangulation
 - K-core Decomposition
 - K-Truss
- Graph Analytics
 - PageRank
 - Personalized PageRank
 - Shortest Path
 - Graph Coloring
- Classification
 - Neural Networks
Graph-Parallel Systems

Expose *specialized APIs* to simplify graph programming.
“Think like a Vertex.”

- Pregel [SIGMOD’10]
The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

```python
Pregel_PageRank(i, messages):
    // Receive all the messages
    total = 0
    foreach (msg in messages):
        total = total + msg

    // Update the rank of this vertex
    R[i] = 0.15 + total

    // Send new messages to neighbors
    foreach (j in out_neighbors[i]):
        Send msg(R[i]) to vertex j
```

Malewicz et al. [PODC’09, SIGMOD’10]
Iterative Bulk Synchronous Execution
Graph-Parallel Systems

Expose specialized APIs to simplify graph programming.

Exploit graph structure to achieve orders-of-magnitude performance gains over more general data-parallel systems.
PageRank on the Live-Journal Graph

Runtime (in seconds, PageRank for 10 iterations)

Mahout/Hadoop

Spark is 4x faster than Hadoop
GraphLab is 16x faster than Spark
Separate Systems to Support Each View

Table View

[Diagram showing a sequence of rows leading to a result]

Graph View

[Diagram of a dependency graph with nodes and edges]

Software Tools:
- Hadoop
- Spark
- Pregel
- GraphLab
- Giraph
Having separate systems for each view is difficult to use and inefficient
Difficult to Program and Use

Users must *Learn, Deploy, and Manage* multiple systems

Leads to brittle and often complex interfaces
Inefficient

Extensive **data movement and duplication** across the network and file system

Limited reuse internal data-structures across stages
GraphX Solution: Tables and Graphs are views of the same physical data.

Each view has its own operators that exploit the semantics of the view to achieve efficient execution.
Graphs → Relational Algebra

1. Encode graphs as distributed tables

2. Express graph computation in relational algebra

3. Recast graph systems optimizations as:
 1. Distributed join optimization
 2. Incremental materialized maintenance

Integrate Graph and Table data processing systems. Achieve performance parity with specialized systems.
Distributed Graphs as Distributed Tables

Property Graph

2D Vertex Cut Heuristic

Part. 1

Part. 2

Routing Table

Vertex Table

Edge Table

D 1 2

B

C

A

D 1

C

1

B

A

F

E

D

1 2

D

E

F

A

E

F

A

B

C

D
Table Operators

Table operators are inherited from Spark:

- `map`
- `filter`
- `groupBy`
- `sort`
- `union`
- `leftOuterJoin`
- `rightOuterJoin`
- `reduce`
- `count`
- `fold`
- `reduceByKey`
- `groupByKey`
- `cogroup`
- `cross`
- `zip`
- `sample`
- `take`
- `first`
- `partitionBy`
- `flatMap`
- `save`
- `...`
class Graph [V, E] {
 def Graph(vertices: Table[(Id, V)], edges: Table[(Id, Id, E)])
 // Table Views -----------------
 def vertices: Table[(Id, V)]
 def edges: Table[(Id, Id, E)]
 def triplets: Table[((Id, V), (Id, V), E)]
 // Transformations -----------------
 def reverse: Graph[V, E]
 def subgraph(pV: (Id, V) => Boolean,
 pE: Edge[V, E] => Boolean): Graph[V, E]
 def mapV(m: (Id, V) => T): Graph[T, E]
 def mapE(m: Edge[V, E] => T): Graph[V, T]
 // Joins ------------------------
 def joinV(tbl: Table[(Id, T)]): Graph[(V, T), E]
 def joinE(tbl: Table[(Id, Id, T)]): Graph[V, (E, T)]
 // Computation ------------------
 def mrTriplets(mapF: (Edge[V, E]) => List[(Id, T)],
 reduceF: (T, T) => T): Graph[T, E]
}
Triplets Join Vertices and Edges

The **triplets** operator joins vertices and edges:

\[
\begin{align*}
\text{SELECT} & \quad \text{t.dstId, reduce(map(t)) AS sum} \\
\text{FROM} & \quad \text{triplets AS t} \\
\text{GROUP BY} & \quad \text{t.dstId}
\end{align*}
\]

The **mrTriplets** operator sums adjacent triplets.

\[
\begin{align*}
\text{SELECT} & \quad \text{s.Id, d.Id, s.P, e.P, d.P} \\
\text{FROM} & \quad \text{edges AS e} \\
\text{JOIN} & \quad \text{vertices AS s, vertices AS d} \\
\text{ON} & \quad \text{e.srcId = s.Id AND e.dstId = d.Id}
\end{align*}
\]
We express *enhanced* Pregel and GraphLab abstractions using the GraphX *operators* in less than 50 lines of code!
SYSTEM DESIGN
Caching for Iterative mrTriplets

Vertex Table (RDD)

- A
- B
- C
- D
- E
- F

Edge Table (RDD)

- A
- B
- C
- D
- E
- F

Mirror Cache

- A
- B
- C
- D
- E
- F

Mirror Cache
Incremental Updates for Iterative mrTriplets

Vertex Table (RDD)

Edge Table (RDD)

Mirror Cache

Change

Scan
Aggregation for Iterative mrTriplets

Vertex Table (RDD)

Change

A

B

C

D

E

F

Edge Table (RDD)

Local Aggregate

Scan

Mirror Cache

A

B

C

D

E

F

Local Aggregate
Reduction in Communication Due to Cached Updates

Connected Components on Twitter Graph

Most vertices are within 8 hops of all vertices in their comp.
Benefit of Indexing *Active* Edges

Connected Components on Twitter Graph

- **Scan**
- **Indexed**

- **Scan All Edges**
- **Index of “Active” Edges**

Runtime (Seconds) vs Iteration
Join Elimination

Identify and bypass joins for unused triplet fields

\[\text{sendMsg}(i \rightarrow j, R[i], R[j], E[i,j]): \]

// Compute single message

return msg(R[i]/E[i,j])
Additional Query Optimizations

Indexing and Bitmaps:
» To accelerate joins across graphs
» To efficiently construct sub-graphs

Substantial Index and Data Reuse:
» Reuse routing tables across graphs and sub-graphs
» Reuse edge adjacency information and indices
The GraphX Stack
(Lines of Code)

GraphX (3575)

Spark

Pregel (28) + GraphLab (50)

PageRank (5)
Connected Comp. (10)
Shortest Path (10)
SVD (40)
ALS (40)
K-core (51)
Triangle Count (45)
LDA (120)

SVD (40)
ALS (40)
K-core (51)
Triangle Count (45)
LDA (120)

GraphX (3575)

Spark
Performance Comparisons

Live-Journal: 69 Million Edges

- Mahout/Hadoop: 1340 seconds
- Naïve Spark: 354 seconds

GraphX is roughly \textbf{3x slower} than GraphLab
GraphX scales to larger graphs

Twitter Graph: 1.5 Billion Edges

GraphX is roughly 2x slower than GraphLab

- Scala + Java overhead: Lambdas, GC time, …
- No shared memory parallelism: 2x increase in comm.
GraphX scales to larger graphs

Twitter Graph: 1.5 Billion Edges

- Spark: 3098
- Giraph: 596
- GraphX: 419
- GraphLab: 249
- GraphLab +NoSHM: 442

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab

» Scala + Java overhead: Lambdas, GC time, …
» No shared memory parallelism: 2x increase in comm.
PageRank is just one stage….

What about a pipeline?
Example Analytics Pipeline

// Load raw data tables
val articles = sc.textFile("hdfs://wiki.xml").map(parserV)
val links = articles.flatMap(xmlLinkParser)
// Build the graph from tables
val graph = new Graph(articles, links)
// Run PageRank Algorithm
val pr = graph.PageRank(tol = 1.0e-5)
// Extract and print the top 20 articles
val topArticles = articles.join(pr).top(20).collect
for ((article, pageRank) <- topArticles) {
 println(article.title + \t + pageRank)
A Small Pipeline in GraphX

Raw Wikipedia → Hyperlinks → PageRank → Top 20 Pages

Spark Preprocess → Compute → Spark Post.

Timed end-to-end GraphX is faster than GraphLab.
Status

Part of Apache Spark

In production at Alibaba Taobao
GraphX: Unified Analytics

New API
Blurs the distinction between Tables and Graphs

New System
Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline
Thanks You

http://amplab.cs.berkeley.edu/projects/graphx/
jegonzal@eecs.berkeley.edu

Reynold Xin
Ankur Dave
Daniel Crankshaw
Michael Franklin
Ion Stoica