
http://www.istc-cc.cmu.edu/ 

Exploi'ng	  Bounded	  Staleness	  to	  
Speed	  Up	  Big	  Data	  Analy'cs	  

Garth Gibson & the BigLearning team 
Carnegie Mellon University 



Parallel ML Systems Architecture 
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• Compare Bounded Async Bulk Synch Parallel 
(A-BSP) vs Stale Synch Parallel (SSP) 

• Repetition-exploiting optimizations (to BSP) 
• Managed (extra) Bandwidth SSP (MBSSP) 
• Convergence-guided Scheduling (STRADS) 

Agenda: Bound Staleness Project Suite 



Bulk Synchronous Parallel 
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•  A barrier every (logical) clock  
•  chunk of work, often 1 iteration on all input data 
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Thread progress illustration: 



Stale Synchronous Parallel (SSP) 
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•  Threads allowed to be slack clocks ahead of 
slowest thread, possibly reading stale data 

[HotOS’13, NIPS’13] 
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Arbitrarily-sized BSP (A-BSP) 

▫  Work in each clock can be more than one iteration 
�  Less synchronization overhead (bounded asynch) 

 
�  A-BSP is SSP with a slack of zero 
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Application Benchmark Example 

•  Topic Modeling 
▫  Algorithm: Gibbs Sampling on LDA 
▫  Input: NY Times dataset 

�  300k docs, 100m words, 100k vocabulary 
▫  Solution quality criterion: Loglikelihood 

�  How likely the model generates observed data 
�  Becomes higher as the algorithm converges 
�  A larger value indicates better quality 

 
•  Hardware information 
▫  8 machines, each with 64 cores & 128GB RAM 

•  Basic configuration 
▫  One client & tablet server per machine 
▫  One computation thread per core  
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iters-per-clock is 1 
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Key Takeaway Insight 
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•  Iterative code often very 
repetitive – exploit! 

�  Virtual iteration 
• Affinity allocation, static 

& precomputed policies, 
multiple levels of cache,  
update prefetching 

•                                                      Lead: Henggang Cui 

Apply Systems Experience to BSP 

[under submission] 



•  In SSP, communication and computation are 
overlapped, but every update is treated equally 

• But not every update is equally important to 
convergence (e.g. small vs. large deltas) 

• MBSSP exploits network bandwidth not fully 
utilized to transmit pending updates sooner 

• Early transmissions may speed convergence 
▫  And may allow greater staleness (latency hiding) 

• What to send early?  Random vs delta ordered 

•  Leads: Jinliang Wei, Wei Dai 

Managed Bandwidth SSP (MBSSP) 

[under submission] 



Absolute Convergence Improved 40% 

LDA (Gibbs Sampling) 
NYT Dataset 
8x64 core nodes 
1GE network 
Fits in memory 

Early transmission reduces 
time needed to converge 
 
Delta-importance-ordered 
achieves as much benefit as 
random early send with half 
the extra bandwidth 



MBSSP Vision 

•  It is beneficial to send out early model 
refinements even with bounded bandwidth. 

• Early communication improves convergence 
enabling much larger staleness (latency hiding). 

• Application-specific policies for preferring 
model refinements can make a big difference. 



STRADS: Up Stack to ML Scheduling 

• Uniform parameter update is not optimal 
▫  Use deeper knowledge of ML algorithms to update 

parameters at different rates for best convergence 
speed (like MBSSP) 

• Random parameter selection for parallel update 
risks divergence (e.g. Shotgun Lasso ) 
▫  Control errors when selecting parameters to 

update in parallel 

•  Leads: Jin Kyu Kim, Seunghak Lee 
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STRADS: Two Scheduling Policies 
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Dependency 
Checker & Filter 

Sampling based 
on delta distribution 

New delta info 
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[arXiv(1406.4580)’14] 



Benefits of Two Scheduling Policies 

Application: Lasso 
 
Synthetic data: 450 by 100K  
-  Parameters are highly correlated. 

w/o scheduling: 
Limit the degree of parallelism to  
70 cores to avoid divergence 
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STRADS still converge with 120 cores 



ML Iterative Solver Execution Model 

Scheduling/Fetch/Execution/Aggregation model 
 
 
 

Scheduling Aggregation Scheduling 

Fetch 

Chord: a set of  
parameters 

Execution 

-  Scheduling selects a chord to minimize aggregate errors of parallel update 
-  Parameters of a chord are selected to be approximately independent 



System Issue: Pipeline Scheduling 
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Chord r0 r0’ Chord r1 r1’ 

Serial execution of chords is a performance bottleneck  

Approach: Make scheduling decisions with latest data only 
for the scheduler’s partition of the (big) model parameters 

aggregation scheduling update 



One pipeline is not enough 
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1: schedule w/ local freshness; execute with global freshness 

2: relax freshness of least important updates (relative to next Chord) 



STRADS Dual Pipeline Convergence 

Application: Lasso 
Data: Synthetic data  
50K samples, 1M dimension 
 
Depth refers to second pipeline 

0 

50 

100 

Depth 1 Depth 2 Depth 3 Depth 4 

Time to objective value 0.061 



STRADS Vision 

•  STRADS’ scheduling policies show order of magnitude faster 
convergence speed compared to parallel ML apps w/o scheduling  

•  ML Apps (esp. with divergence risks) benefit from significant 
scheduling and bounded staleness to fully utilize parallelism 

•  Concept of “iteration” is lost when importance guides update 
frequency (don’t just delay communication, delay computation too) 
▫  Staleness can still bound minimal update frequency 

•  Fully utilizing hardware when scheduling is non-trivial adds 
additional reasons for exploiting staleness induced error 
tolerance 

 
•  Three canonical ML applications (Lasso, Logistic Regression, SVM) 

implemented of STRADS framework so far. 



• Compare Bounded Async Bulk Synch Parallel 
(A-BSP) vs Stale Synch Parallel (SSP) 
▫  Similar best case speedups 
▫  SSP tolerates (transient) stragglers (see paper) 

• Repetition-exploiting optimizations (to BSP) 
• Managed extra Bandwidth SSP (MBSSP) 
▫  Smart early-notify speeds convergence 

• Convergence-guided Scheduling (STRADS) 
▫  Up the ML stack to control update order too 
▫  Escape straightjacket of “the iteration” 
▫  Tackle divergence head on & use staleness for 

latency hiding to better utilize hardware 

Closing: Bound Staleness Project Suite 
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