
http://www.istc-cc.cmu.edu/

Exploi'ng	 Bounded	 Staleness	 to	
Speed	 Up	 Big	 Data	 Analy'cs	

Garth Gibson & the BigLearning team
Carnegie Mellon University

Parallel ML Systems Architecture

2

Partitioned
input data

Parallel iterative code Model parameters

 Client-lib

 Client-lib

 Client-lib

Server

Server

Server

Server

• Compare Bounded Async Bulk Synch Parallel
(A-BSP) vs Stale Synch Parallel (SSP)

• Repetition-exploiting optimizations (to BSP)
• Managed (extra) Bandwidth SSP (MBSSP)
• Convergence-guided Scheduling (STRADS)

Agenda: Bound Staleness Project Suite

Bulk Synchronous Parallel

4

•  A barrier every (logical) clock
•  chunk of work, often 1 iteration on all input data

Clock 0 1 2 3 4

Thread 1

Thread 2

Thread 3
Updates not
necessarily
visible

Thread 1
blocked by
barrier

Iteration 0 1 2 3 4

Iterations
complete,
updates
visible

Thread progress illustration:

Stale Synchronous Parallel (SSP)

5

•  Threads allowed to be slack clocks ahead of
slowest thread, possibly reading stale data

[HotOS’13, NIPS’13]

Thread 1

Thread 2

Thread 3

Slack of 1 clock

Thread 1 at
clock 3

Iteration 0 1 2 3 4

Clock 0 1 2 3 4

Thread 2 at
clock 2

Arbitrarily-sized BSP (A-BSP)

▫  Work in each clock can be more than one iteration
�  Less synchronization overhead (bounded asynch)

�  A-BSP is SSP with a slack of zero

6

Thread 1
blocked by
barrier

Clock 0 1 2

Thread 1

Thread 2

Thread 3

two iterations per clock
Iteration 0 1 2 3 4

Application Benchmark Example

•  Topic Modeling
▫  Algorithm: Gibbs Sampling on LDA
▫  Input: NY Times dataset

�  300k docs, 100m words, 100k vocabulary
▫  Solution quality criterion: Loglikelihood

�  How likely the model generates observed data
�  Becomes higher as the algorithm converges
�  A larger value indicates better quality

•  Hardware information
▫  8 machines, each with 64 cores & 128GB RAM

•  Basic configuration
▫  One client & tablet server per machine
▫  One computation thread per core

7

0 100 200 300
0

20

40

60

Iterations 	 per	 s ec

Ite
ra
tio

ns
	 d
on

e

T ime	 (s ec)

	 s la ck=0	 (B S P)
	 s la ck=1	 (S S P)
	 s la ck=3	 (S S P)

Staleness Increases Iters/sec

8

iters-per-clock is 1

0 20 40 60

C
on

ve
rg
en

ce
(h
ig
he

r	
is
	 b
et
te
r)

Ite ra tions 	 done

	 s la ck=0	 (B S P)
	 s la ck=1	 (S S P)
	 s la ck=3	 (S S P)

C onverg enc e	 per	 iter

Staleness Reduces Converge/iteration

9

iters-per-clock is 1

Key Takeaway Insight

10

Fresher data Staler data

Iterations
per second

Convergence
per iteration

Convergence
per second

The sweet
spot

[ATC’14]

•  Iterative code often very
repetitive – exploit!

�  Virtual iteration
• Affinity allocation, static

& precomputed policies,
multiple levels of cache,
update prefetching

•  Lead: Henggang Cui

Apply Systems Experience to BSP

[under submission]

•  In SSP, communication and computation are
overlapped, but every update is treated equally

• But not every update is equally important to
convergence (e.g. small vs. large deltas)

• MBSSP exploits network bandwidth not fully
utilized to transmit pending updates sooner

• Early transmissions may speed convergence
▫  And may allow greater staleness (latency hiding)

• What to send early? Random vs delta ordered

•  Leads: Jinliang Wei, Wei Dai

Managed Bandwidth SSP (MBSSP)

[under submission]

Absolute Convergence Improved 40%

LDA (Gibbs Sampling)
NYT Dataset
8x64 core nodes
1GE network
Fits in memory

Early transmission reduces
time needed to converge

Delta-importance-ordered
achieves as much benefit as
random early send with half
the extra bandwidth

MBSSP Vision

•  It is beneficial to send out early model
refinements even with bounded bandwidth.

• Early communication improves convergence
enabling much larger staleness (latency hiding).

• Application-specific policies for preferring
model refinements can make a big difference.

STRADS: Up Stack to ML Scheduling

• Uniform parameter update is not optimal
▫  Use deeper knowledge of ML algorithms to update

parameters at different rates for best convergence
speed (like MBSSP)

• Random parameter selection for parallel update
risks divergence (e.g. Shotgun Lasso)
▫  Control errors when selecting parameters to

update in parallel

•  Leads: Jin Kyu Kim, Seunghak Lee

15

STRADS: Two Scheduling Policies

X1 X2 X4 X7 X8

Workers in remote machines

…….

0.11

0.01

0.003

0.15

0.0001

0.001

0.07

0.0003

0

Weight of model parameters
|Delta of x| One update set

in ready queue

|Delta x |

D
en

si
ty

Δx1

Δx2

Δx3

Δx4

Δx5

Δx6

Δx7

Δx8

Δx9

16

Dependency
Checker & Filter

Sampling based
on delta distribution

New delta info

1

2

[arXiv(1406.4580)’14]

Benefits of Two Scheduling Policies

Application: Lasso

Synthetic data: 450 by 100K
-  Parameters are highly correlated.

w/o scheduling:
Limit the degree of parallelism to
70 cores to avoid divergence

17

time in sec

w/o scheduling
w/t STRADS

70 cores
120 cores

w/o scheduling diverges
beyond 80 cores

O
bj

. F
un

c
Va

lu
e

(s
m

al
le

r i
s

be
tte

r)

STRADS still converge with 120 cores

ML Iterative Solver Execution Model

Scheduling/Fetch/Execution/Aggregation model

Scheduling Aggregation Scheduling

Fetch

Chord: a set of
parameters

Execution

-  Scheduling selects a chord to minimize aggregate errors of parallel update
-  Parameters of a chord are selected to be approximately independent

System Issue: Pipeline Scheduling

Scheduler

W
or

ke
rs

Chord r0 r0’ Chord r1 r1’

Serial execution of chords is a performance bottleneck

Approach: Make scheduling decisions with latest data only
for the scheduler’s partition of the (big) model parameters

aggregation scheduling update

One pipeline is not enough

Coordinator

Scheduler 1

Scheduler 2

W
or

ke
rs

r0’

Chord r0 Chord r1 Chord r2 Chord r3

Scheduler 0

r1’ r2’

t0, t1, t2 t3, t4, t5

scheduling

aggregation

1: schedule w/ local freshness; execute with global freshness

2: relax freshness of least important updates (relative to next Chord)

STRADS Dual Pipeline Convergence

Application: Lasso
Data: Synthetic data
50K samples, 1M dimension

Depth refers to second pipeline

0

50

100

Depth 1 Depth 2 Depth 3 Depth 4

Time to objective value 0.061

STRADS Vision

•  STRADS’ scheduling policies show order of magnitude faster
convergence speed compared to parallel ML apps w/o scheduling

•  ML Apps (esp. with divergence risks) benefit from significant
scheduling and bounded staleness to fully utilize parallelism

•  Concept of “iteration” is lost when importance guides update
frequency (don’t just delay communication, delay computation too)
▫  Staleness can still bound minimal update frequency

•  Fully utilizing hardware when scheduling is non-trivial adds
additional reasons for exploiting staleness induced error
tolerance

•  Three canonical ML applications (Lasso, Logistic Regression, SVM)

implemented of STRADS framework so far.

• Compare Bounded Async Bulk Synch Parallel
(A-BSP) vs Stale Synch Parallel (SSP)
▫  Similar best case speedups
▫  SSP tolerates (transient) stragglers (see paper)

• Repetition-exploiting optimizations (to BSP)
• Managed extra Bandwidth SSP (MBSSP)
▫  Smart early-notify speeds convergence

• Convergence-guided Scheduling (STRADS)
▫  Up the ML stack to control update order too
▫  Escape straightjacket of “the iteration”
▫  Tackle divergence head on & use staleness for

latency hiding to better utilize hardware

Closing: Bound Staleness Project Suite

• Carnegie Mellon Univ students on this project
▫  Henggang Cui
▫  Qirong Ho
▫  Jinliang Wei
▫  Wei Dai
▫  Jin Kyu Kim
▫  Seunghak Lee
▫  Abhimanu Kumar
▫  James Cipar
▫  Alexey Tumanov
▫  Lianghong Xu
▫  Jesse Haber-Kucharsky

Contributing Students

