Hardware
Protocols
and Key-Value Storage

David G. Andersen, Michael Kaminsky
and the folks who really did the work:
Hyeontaek Lim, Anuj Kalia, Dong Zhou

Throughput-Latency on Ethernet

Average latency (us)

100 100
4 Original Memcached MICA
75 T 75 —
a 200x+ throughput
25 25 1=
0 0 - - - -
0) 0.3 0) 20 40 60 30
Throughput (Mops)

Original Memcached using standard socket 1/0; both use UDP

2

Computational
Efficiency

Memory Efficiency

Algorithmic Architectural
Optimization Tailoring

INn-memory KV stores

‘ Webserver

‘Webserver -

‘ Webserver

Wiiu Wi

‘ memcached |

—>

‘Webserver ..

Database

Interface: GET, PUT

Requirements:

oW |ate

Ncy

—High rec

uest rate

‘ Webserver I|

Webserver

Webserver

Webserver

Webserver

—>

memcached

Processing

‘ Webserver I|

Webserver

Webserver

Webserver

Webserver

—>

memcached

(See Cuckoo
Talk)

How to get requests (packets) in and out?

How to design & implement the index and
datastore”

In ways that work with modern hardware

 Multicore, NUMA, 40gbps NICs, etc.

MICA HERD

[NSDI’14] [SIGCOMM’14]

Ethernet Infiniband / RoCE

Intel DPDK RDMA

MICA Approach

e MICA: Redesighing in-memory key-value storage
e Applies new SW architecture and data structures

to general-purpose HW in a holistic way

Server node

*
L 4

O..
L 4
>
*
 J

mnm LN |
““l ..
* .
* s
G
- CPU - .
a . »
Y| D) % e fa,
IS . o | | " "
. [] s » LS .
[] - a gy .
ient : ——> — :Memory :
. .
Py [] -‘) Q. ’0
2 N . o % «v*
. < CPU* e
'0. ‘0’ A\ .

AT Rt .. o '\-\
2. Request 1. Parallel 3. Key-value
direction data access data structures

(cache & store)

Parallel Data Access

Server node

. .:00 / “‘_CPU:: ::’ * “
Client : ——| NIC N7 :) ;
«".. ‘& },’ C P U "“) "
2. Request 1. Parallel 3. Key-value
direction data access data structures

e Modern CPUs have many cores (8, 15, ...)
e How to exploit CPU parallelism efficiently?

10

Parallel Data Access Schemes

Concurrent Read Concurrent
Write

CPU core
>< Memory
CPU core

+ Good load distribution

- Limited CPU scalability
(e.g., synchronization)
- Cross-NUMA latency

Exclusive Read
Exclusive Write

CPU core

CPU core

>

Partition

>

Partition

+ Good CPU scalability

- Potentially low performance
under skewed workloads

11

In MICA, Exclusive Outperforms Concurrent

Throughput (Mops)

30

60

40

20 -

69.3 69.4

"~ Uniform, 50% GET
" Uniform, 95% GET

% Skewed, 50% GET
Skewed, 95% GET

Concurrent Access

Exclusive Access

End-to-end performance with kernel bypass /0

12

Request Direction

Server node

R CPU ““---....'.0’
Client i— NIC | Memory}
2. Request 1. Parallel 3. Key-value
direction data access data structures

e Sending requests to appropriate CPU cores for
better data access locality

e Exclusive access benefits from correct delivery
e Each request must be sent to corresp. partition’s core

13

Request Direction Schemes

Flow-based Affinity Object-based Affinity
Server node Server node
Key 1
Client CPU | | Client | CPU
NIC orq! NIC
Client CPU | Client |~ f CPU

Classification using 5-tuple Classification depends on

. request content
+ Good locality for flows

(e.g., HTTP over TCP) + Good locality for key access

- Suboptimal for small - Client assist or special HW
key-value processing support needed for efficiency

14

Crucial to Use NIC HW for Request Direction

Throughput (Mops)
80

" Uniform
% Skewed
60
40 33.9
20
0

Request direction done solely by software

Using exclusive access for parallel data access

15

Plus some cool data structures

insigde

(see Lim et al., NSD| 2014)

Result;

The tastest network-based key-value server that
we know of.

2 socket Xeon server can nearly saturate

80Gbps of

—thernet (8x10Gbps).

Protocol changes to let NICs direct requests to the right core

Careful attention to NUMA and locality

OS & Stack bypass to eliminate overhead

RDMA

Remote Direct Memory Access:
A network feature that allows
direct access to the memory of
a remote computer.

18

HERD

1. Improved understanding of RDMA through
micro-benchmarking

2. High-pertormance key-value system:
* Throughput: 26 Mops (2X higher than others)

o |atency: 5 us (2X lower than others)

19

RDMA Intro

Features: Providers:

» Ultra-low latency: 1 us RTT InfiniBand, RoCE,...

o Zero copy + CPU bypass

‘User buffer

NIC >4-| DMA buffer |—{User buffer |

: O .

20

RDMA In the gatacenter

48 port 10 GbE switches

Mellanox SX1012

Cisco 5548UP

Juniper EX5440

21

QLOGIC .+

<

Microsoft Azure

XX

_Mellanox . GO gle

— o Qg
PR
‘. T

Quanta Computer

RDMA basics

Verbs

RDMA read:

READ (local buf, size, remote addr)

RDMA write:

WRITE (local buf, size, remote addr)

22

| Ife of a WRITE

Requester

CPU,RAM RNIC

1: Request descriptor, PIO

2. Payload, DMA read

3: RDMA write request

6: Completion, DMA write

Responder

L]
-~
)
)

-
-
-

23

RNIC CPU,RAM

4. Payload, DMA write

5: RDMA ACK

Recent systems

Pilaf [ATC 2013]

FaRM-KV [NSDI 2014]: an example usage of FaRM

Approach: RDMA reads to access remote data structures

Reason: the allure of CPU bypass

24

The price of CPU bypass

Key-Value stores have an inherent level of indirection.

An iIndex maps a keys to address. Values are stored

separately.

Server's DRAM
Index Values

B> |

At least 2 RDMA reads required:
= 1 to fetch address

1 to fetch value

Not true if value is in index

25

The prlce of CPU bypass

\

20

The price of CPU bypass

Server
READ #1 (fetch pointer)

Client

27

The price of CPU bypass

Server
READ #2 (tetch value)

Client

28

Our approach

Main ideas

#1: Use a single round trip

Request-reply with server CPU involvement +
WRITEs faster than READs

#2. Increase throughput

Low level verbs optimizations

#3. Improve scalability

Use datagram transport

29

#1: Use a single round trip

Client

30

#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ BRDMA reads

HERD GET 1 2 RDMA writes

\/Lower latency @High throughput
O

RDMA WRITEs faster than READs

Setup: Apt Cluster

192 nodes, 56 Gbps IB

O READ 4 \WRITE

N
O

—
@)

Throughput (Mops)
S 38

O
~

32 64 92 128 160 192 224 256
Payload size (Bytes)

32

High-speed request-reply

Request-reply throughput:

—L]

Setup: one-to-one client-server
communication

30

20

10

Throughput (Mops)

33

32 byte payloads

2 WRITEs

2 READs

Request-Reply

1 READ

READ

Step 2:
Optimize the primitives
(detalils in paper)

Key takeaway: Naive uses of other RDMA
primitives are slow
But there exist optimized uses that are really tast

Evaluation

HERD = Request-Reply + MICA [NSDI 2014]

Compare against emulated versions of Pilaf and
FaRM-KV

e NoO datastore

* Focus on maximum performance achievable

35

|_atency vs throughput

48 byte items, GET intensive workload

— HERD
r - 95t percentile
o))

O
S
o 5 .
% 8 T L 5t percentile
O
S 26 Mops, 5 us
T U
- ! 1 I
% Low load, 3.4 us
—

0

0 5 10 15 20 25 30

Throughput (Mops)

36

|_atency vs throughput

48 byte items, GET intensive workload

— Emulated Pilaf = Emulated FaRM-KV =— HERD
- 95 percentile

L 5th percentile

Low load, 3.4 us

0 5 10 15 20 25 30

Latency (microseconds)
[@))

Throughput (Mops)

37

Throughput comparison

16 byte keys, 95% GET workload

0 Emulated Pilaf ¥ Emulated FaRM-KV

A HERD
30
L——D—/
/U? A
)
= 20 2X higher |
S
s v
o VX
> 10 —O— O ——§
O
-
I_
0
4 8 16 32 64 128 256 512 1024

Value size (Bytes)

38

Computational

Efficiency Memory Efticiency

MICA and HERD key-value stores pEroarTT
[Can we (semi)
e

automate?

Architectural | '
Tailoring

Protcols that are
locality-friendly

Algorithmic

Optimization

Good Data Structures

Optimize for the right things
(few RTTs!)

