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Original Memcached using standard socket 1/0; both use UDP
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INn-memory KV stores
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How to get requests (packets) in and out?

How to design & implement the index and
datastore”

In ways that work with modern hardware

 Multicore, NUMA, 40gbps NICs, etc.



MICA HERD

[NSDI’14] [SIGCOMM’14]

Ethernet Infiniband / RoCE

Intel DPDK RDMA



MICA Approach

e MICA: Redesighing in-memory key-value storage
e Applies new SW architecture and data structures

to general-purpose HW in a holistic way
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Parallel Data Access

Server node
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2. Request 1. Parallel 3. Key-value
direction data access data structures

e Modern CPUs have many cores (8, 15, ...)
e How to exploit CPU parallelism efficiently?
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Parallel Data Access Schemes

Concurrent Read Concurrent
Write

CPU core
>< Memory
CPU core

+ Good load distribution

- Limited CPU scalability
(e.g., synchronization)
- Cross-NUMA latency

Exclusive Read
Exclusive Write

CPU core

CPU core

>

Partition

>

Partition

+ Good CPU scalability

- Potentially low performance
under skewed workloads
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In MICA, Exclusive Outperforms Concurrent

Throughput (Mops)
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Concurrent Access

Exclusive Access

End-to-end performance with kernel bypass /0
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Request Direction

Server node

R CPU ““---....'.0’
Client i— NIC | Memory}
2. Request 1. Parallel 3. Key-value
direction data access data structures

e Sending requests to appropriate CPU cores for
better data access locality

e Exclusive access benefits from correct delivery
e Each request must be sent to corresp. partition’s core
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Request Direction Schemes

Flow-based Affinity Object-based Affinity
Server node Server node
Key 1
Client CPU | | Client | CPU
NIC orq! NIC
Client CPU | Client |~ f CPU

Classification using 5-tuple Classification depends on

. request content
+ Good locality for flows

(e.g., HTTP over TCP) + Good locality for key access

- Suboptimal for small - Client assist or special HW
key-value processing support needed for efficiency
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Crucial to Use NIC HW for Request Direction

Throughput (Mops)
80

" Uniform
% Skewed
60
40 33.9
20
0

Request direction done solely by software

Using exclusive access for parallel data access
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Plus some cool data structures

insigde

(see Lim et al., NSD| 2014)

Result;

The tastest network-based key-value server that
we know of.

2 socket Xeon server can nearly saturate

80Gbps of

—thernet (8x10Gbps).



Protocol changes to let NICs direct requests to the right core

Careful attention to NUMA and locality

OS & Stack bypass to eliminate overhead



RDMA

Remote Direct Memory Access:
A network feature that allows
direct access to the memory of
a remote computer.
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HERD

1. Improved understanding of RDMA through
micro-benchmarking

2. High-pertormance key-value system:
* Throughput: 26 Mops (2X higher than others)

o |atency: 5 us (2X lower than others)
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RDMA Intro

Features: Providers:

» Ultra-low latency: 1 us RTT InfiniBand, RoCE,...

o Zero copy + CPU bypass

‘User buffer

NIC >4-| DMA buffer |—{User buffer |

: O .

20



RDMA In the gatacenter

48 port 10 GbE switches

Mellanox SX1012

Cisco 5548UP

Juniper EX5440
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RDMA basics

Verbs

RDMA read:

READ (local buf, size, remote addr)

RDMA write:

WRITE (local buf, size, remote addr)
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| Ife of a WRITE

Requester

CPU,RAM RNIC

1: Request descriptor, PIO

2. Payload, DMA read

3: RDMA write request

6: Completion, DMA write

Responder
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RNIC CPU,RAM

4. Payload, DMA write

5: RDMA ACK




Recent systems

Pilaf [ATC 2013]

FaRM-KV [NSDI 2014]: an example usage of FaRM

Approach: RDMA reads to access remote data structures

Reason: the allure of CPU bypass
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The price of CPU bypass

Key-Value stores have an inherent level of indirection.

An iIndex maps a keys to address. Values are stored

separately.

Server's DRAM
Index Values

B> |

At least 2 RDMA reads required:
= 1 to fetch address

1 to fetch value

Not true if value is in index
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The prlce of CPU bypass

\
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The price of CPU bypass

Server
READ #1 (fetch pointer)

Client
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The price of CPU bypass

Server
READ #2 (tetch value)

Client
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Our approach

Main ideas

#1: Use a single round trip

Request-reply with server CPU involvement +
WRITEs faster than READs

#2. Increase throughput

Low level verbs optimizations

#3. Improve scalability

Use datagram transport
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#1: Use a single round trip

Client
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#1: Use a single round trip

Operation Round Trips Operations at server’s RNIC

READ-based GET 2+ BRDMA reads

HERD GET 1 2 RDMA writes

\/Lower latency @High throughput
O



RDMA WRITEs faster than READs

Setup: Apt Cluster

192 nodes, 56 Gbps IB

O READ 4 \WRITE

N
O

—
@)

Throughput (Mops)
S 38

O
~

32 64 92 128 160 192 224 256
Payload size (Bytes)
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High-speed request-reply

Request-reply throughput:

—L]

Setup: one-to-one client-server
communication
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32 byte payloads

2 WRITEs

2 READs

Request-Reply

1 READ

READ



Step 2:
Optimize the primitives
(detalils in paper)

Key takeaway: Naive uses of other RDMA
primitives are slow
But there exist optimized uses that are really tast



Evaluation

HERD = Request-Reply + MICA [NSDI 2014]

Compare against emulated versions of Pilaf and
FaRM-KV

e NoO datastore

* Focus on maximum performance achievable
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|_atency vs throughput

48 byte items, GET intensive workload
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|_atency vs throughput

48 byte items, GET intensive workload

— Emulated Pilaf = Emulated FaRM-KV =— HERD
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Throughput comparison

16 byte keys, 95% GET workload
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Computational

Efficiency Memory Efticiency

MICA and HERD key-value stores pEroarTT
[ Can we (semi)
e

automate?

Architectural | '
Tailoring

Protcols that are
locality-friendly

Algorithmic

Optimization

Good Data Structures

Optimize for the right things
(few RTTs!)



