Forwarding Table Scalability For Cluster Switches
Dong Zhou, Bin Fan, Hyeontaek Lim, David G. Andersen, Michael Kaminsky*, Michael Mitzenmacher†
(CMU, *Intel, †Harvard)

Problem
- FIB capacity does not scale out with the number of servers (line cards)
- Goal: achieve FIB scalability without increasing the amount of internal traffic

Potential Applications
- Huge flat-addressed networks
- Hardware-based switches?
- Flow-oriented applications (SDN? NAT?)
- We are looking for more! Ideas?

Existing Architectures
- RouteBricks
- Crossbar with Full Duplication
- Crossbar with Hash Partitioning

Solution: XBricks
- Each node is responsible only for FIB entries that have the node itself as egress node — partitioned FIB
- Each node uses a global partition table to map all the known addresses to egress nodes — one hop latency

Global Partition Table: XSep
- Two observations
 - The range of possible values is very small
 - Unknown keys can be mapped to incorrect values instead of “not found”
- Set separation instead of general key-value mapping
- 2-4 bits per entry for a small number of servers

Evaluation
- End-to-end latency
- Throughput of XBricks vs. FIB size
- Scalability