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Motivation & Goal 

Hybrid Masstree Index 

Project Goal: Reduce memory footprints in main memory OLTP database systems. 
 

Why? Memory hit rate determines the performance of a main memory OLTP database system. Reducing memory  
                footprints gives the system more space to cache frequently accessed data  # disk seeks is reduced. 
 

Problem: A significant fraction of memory space is dedicated to index structures. 
 

Solution: Treat “hot” and “cold” data differently when creating index entries. 

Preliminary Results: Less Memory AND Faster 

Space-Efficient Masstree (SEM) 
Masstree [Eurosys 2012] with more effective garbage 
collection and more efficient memory allocation 
 

Static Masstree 
A compact, read-only version of Masstree 
(Please refer to poster “Pruning Masstree” for detail) 

 

Mechanism 
 Index entries for “hot” tuples stay in Space-Efficient 

Masstree while those for “cold” tuples are 
periodically merged to Static Masstree 

 Use hints provided by the Anti-Caching Logic to 
decide when and what tuples to migrate 
 

 

Workload: TPC-C 
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key 
size (B) # entries workload 

Index 1 11 47,105 100% put 

Index 2 7 3,000 1.7% put 
98.3% get 

Index 3 6 100,000 5.6% put 
94.4% get 

Index 4 11 471,051 100% put 

Value size = 8B for all indices 
CPU: Intel Core i7-4770, 3.4GHz 
L2 cache size: 8MB 

Context: Anti-Caching  
 Similar to “paging” in virtual memory 
 Main memory (rather than disk) is the primary storage 
 “Cold” data is evicted to disk when memory is exhausted 

      [Anti-Caching, VLDB 2013] 
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