
Let’s Squeeze Memory out of Index Structures
Huanchen Zhang (CMU), Andrew Pavlo (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

Motivation & Goal

Hybrid Masstree Index

Project Goal: Reduce memory footprints in main memory OLTP database systems.

Why? Memory hit rate determines the performance of a main memory OLTP database system. Reducing memory
 footprints gives the system more space to cache frequently accessed data  # disk seeks is reduced.

Problem: A significant fraction of memory space is dedicated to index structures.

Solution: Treat “hot” and “cold” data differently when creating index entries.

Preliminary Results: Less Memory AND Faster

Space-Efficient Masstree (SEM)
Masstree [Eurosys 2012] with more effective garbage
collection and more efficient memory allocation

Static Masstree
A compact, read-only version of Masstree
(Please refer to poster “Pruning Masstree” for detail)

Mechanism
 Index entries for “hot” tuples stay in Space-Efficient

Masstree while those for “cold” tuples are
periodically merged to Static Masstree

 Use hints provided by the Anti-Caching Logic to
decide when and what tuples to migrate

Workload: TPC-C

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4

M
op

s/
se

c

Selected Indices

Throughput

Masstree
Static Masstree
std::map
stx::btree

0

10

20

30

40

50

60

70

80

1 2 3 4

By
te

s

Selected Indices

Memory Consumption per Tuple

Masstree
Static Masstree
std::map
stx::btree

key
size (B) # entries workload

Index 1 11 47,105 100% put

Index 2 7 3,000 1.7% put
98.3% get

Index 3 6 100,000 5.6% put
94.4% get

Index 4 11 471,051 100% put

Value size = 8B for all indices
CPU: Intel Core i7-4770, 3.4GHz
L2 cache size: 8MB

Context: Anti-Caching
 Similar to “paging” in virtual memory
 Main memory (rather than disk) is the primary storage
 “Cold” data is evicted to disk when memory is exhausted

 [Anti-Caching, VLDB 2013]

SEM Static
Masstree Static

Masstree

“cold” evicted

Frequently
modified tuples Less frequently

accessed tuples
Evicted tuples

Read Requests Write Requests

Index Structures
(always in memory)

Backing store
for tuples

	Slide Number 1

