Pruning Masstree

Huanchen Zhang (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)
E. T B R " WS T O O O e v T s

Overview Improvement 2: Static Masstree

Problem: high structural overhead
= Most B*-trees contain very few keys

Motivation: Key-value stores are a critical building
block behind many cloud and network services

Solution: treat “cold” keys as read only

* Preserve the trie structure for space-efficiency

= Serialize each B*-tree into a sorted array of keyslices and
perform binary search on it for indexing

» Eliminate Stringbags and store key suffixes in place

Goal: Building a space-efficient, high-performance
key-value store that also supports range queries

Baseline: Masstree

= The basic structure of

|

Masstree is a concatenation i e Massnode
of layers of B*-trees that) bodernodes |
conceptually form a trie I
[Masstree, Eurosys’12] vt i
key bytes 815 | |
' |

Example SN oottt g S—— S)

= |nitially, two URL keys “edu.cmu.cs.www/~dga/bio.html|” and
"edu.cmu.www/index.shtml|” are stored in the Masstree

* |nserting a third key “edu.cmu.cs.www/~garth/#research” to the
original 2-layer Masstree leads to a 3-layer Masstree

keyslices
suffix position offsets atb+d a+b+d

key suffixes

@

Shared prefix
y (keyslice))

link or value (pointers)

/

“cs.www/~" “www/inde”

“cs.www/~" “www/inde”

I
I
|
|
I
|
I
I
|
|
I
|
I
I
|
I
I
I
I
I
I
I
} .
- Evaluation
“dga/bio.html” |
”X.Shtmln o o V24 o h # V24 :
Sl 90 garth/ir | Comparison of Improved Versions of Masstree
| Performance
“html” | (items/sec) .
“esearch” | 1,400,000 Space-efficient
Ci | Static Masstree Masstree Masstree Workload (based on YCSB)
Strmgbag: a per B*-tree node I 1,200,000 e ® ° = Key: URL
structure to hold unique suffix : 1,000,000 . * = Value: 64-bit integer
for each key) | 800,000 = 67% put, 33% delete;
9 : ® Get then 100% get
| 600,000 o Put/Delete | ® Single thread
e o | 400,000
Improvement 1: Space-Efficient Masstree | | ..,
| 0
. 0 50 100 150 200 250 300 350
Problem: high memory waste from Stringbags : s
» Aggressive coarse-grain memory allocation |
u ' I
Internal fragmentation ol Range Query Performance
: (items/sec)
. | 35,000,000
SOIUtlon | 30,000,000
: : | T Workload (based on TPC-C)
» More effective garbage collection | 25000000 = Key: 15-40B string
» Detect and reclaim unused Stringbags | 20000000 . \S/alu?: f;l-bitd integer
. . B Masstree = Slngie tnhrea
» Resolve internal fragmentation | 15000000 B Static Masstree ’
= More efficient memory allocation | 1000000
= Conservative (invoke gc before granting new space) : 5,000,000 L. '
» Fine-grain to avoid over-allocation | 0 S o
| 5 10 20 50 100 200 500 1000
| Range Size
I

Carnegie
Georgia PRINCETON UNIVERSITY of
o %J%gg;lsity Tech & unversrry UC Berkeley. wasyingTON

	Slide Number 1

