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Overview Improvement 2: Static Masstree

Problem: high structural overhead
= Most B*-trees contain very few keys

Motivation: Key-value stores are a critical building
block behind many cloud and network services

Solution: treat “cold” keys as read only

* Preserve the trie structure for space-efficiency

= Serialize each B*-tree into a sorted array of keyslices and
perform binary search on it for indexing

» Eliminate Stringbags and store key suffixes in place

Goal: Building a space-efficient, high-performance
key-value store that also supports range queries

Baseline: Masstree
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= |nitially, two URL keys “edu.cmu.cs.www/~dga/bio.html|” and
"edu.cmu.www/index.shtml|” are stored in the Masstree

* |nserting a third key “edu.cmu.cs.www/~garth/#research” to the
original 2-layer Masstree leads to a 3-layer Masstree
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