
Pruning Masstree
Huanchen Zhang (CMU), David G. Andersen (CMU), Michael Kaminsky (Intel Labs)

Overview Improvement 2: Static Masstree

Motivation: Key-value stores are a critical building
block behind many cloud and network services

Goal: Building a space-efficient, high-performance
key-value store that also supports range queries

Baseline: Masstree
 The basic structure of

Masstree is a concatenation
of layers of B+-trees that
conceptually form a trie
[Masstree, Eurosys’12]

Example
 Initially, two URL keys “edu.cmu.cs.www/~dga/bio.html” and

“edu.cmu.www/index.shtml” are stored in the Masstree
 Inserting a third key “edu.cmu.cs.www/~garth/#research” to the

original 2-layer Masstree leads to a 3-layer Masstree

Improvement 1: Space-Efficient Masstree

Evaluation

Problem: high memory waste from Stringbags
Aggressive coarse-grain memory allocation
 Internal fragmentation

Solution
 More effective garbage collection

Detect and reclaim unused Stringbags
Resolve internal fragmentation

 More efficient memory allocation
Conservative (invoke gc before granting new space)
Fine-grain to avoid over-allocation

Problem: high structural overhead
 Most B+-trees contain very few keys

Solution: treat “cold” keys as read only
 Preserve the trie structure for space-efficiency
 Serialize each B+-tree into a sorted array of keyslices and
 perform binary search on it for indexing
 Eliminate Stringbags and store key suffixes in place

Static
Massnode

suffix position offsets
A B E C D
0 a a+b a+b a+b+d a+b+d

Asuf Bsuf Dsuf

0 a a+b a+b+d

Alv Blv Elv Dlv Clv

keyslices

key suffixes

link or value (pointers)

Masstree

Space-efficient
Masstree Static Masstree

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

0 50 100 150 200 250 300 350

Performance
 (items/sec)

Memory Consumption (MB)

Comparison of Improved Versions of Masstree

Get

Put/Delete

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

30,000,000

35,000,000

5 10 20 50 100 200 500 1000

Performance
(items/sec)

Range Size

Range Query Performance

Masstree
Static Masstree

Workload (based on YCSB)
 Key: URL
 Value: 64-bit integer
 67% put, 33% delete;

then 100% get
 Single thread

“edu.cmu.”

“cs.www/~” “www/inde”

“dga/bio.html”
“x.shtml”

“edu.cmu.”

“cs.www/~” “www/inde”

“x.shtml”

“dga/bio.” “garth/#r”

“esearch”
“html”

Stringbag: a per B+-tree node
structure to hold unique suffix

for each key

Shared prefix
(keyslice)

Value

Workload (based on TPC-C)
 Key: 15-40B string
 Value: 64-bit integer
 Single thread

	Slide Number 1

