SpringFS: Bridging Agility and Performance in Elastic Distributed Storage

Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta, Greg Ganger, Michael Kozuch* (CMU, *Intel Labs)

MOTIVATION

- Cloud storage can and should be elastic
- Ability to extract/re-integrate servers on demand
- Elasticity is most useful when it is "agile"
 - Agility: quickness of elastic resizing
 - Value: machine-hour (money) savings
 - Challenge: Data migration is expensive

- Agile resizing \rightarrow 50% less machine hour usage
- State-of-the-art elastic storage designs
 - Sierra and Rabbit force painful tradeoff between elasticity, performance and agility
- Need a new elastic storage design that
 - Fills the gap in the tradeoff space
 - Achieves great agility
 - Maintains performance and elasticity goals

BRIDGING AGILITY & PERFORMANCE

RESULTS WITH INDUSTRIAL TRACES

- SpringFS achieves "close-to-ideal" machine hour usage
- Better than Rabbit when extracting servers

Intel Science & Technology Center for Cloud Computing

Better than Sierra when re-integrating servers

SPRINGFS DATA LAYOUT

- Continuum between "Rabbit" and "Sierra"
 - Elasticity of Rabbit
 - Peak write performance of Sierra
 - Maximized agility along continuum between best cases

- N: Total size of the cluster
- p: Number of primaries of Rabbit
 - $p=N/e^2$ (e is Euler Constant)
- m: "Offload set" in SpringFS
 - Bounds the offloading of primary replicas
 - Adjustable tradeoff between write perf & cleanup work
 - Adapted to workload changes

SPRINGFS PERFORMANCE & CLEANUP WORK

30 nodes, each with a 2GB file, 128MB block size

Minimize cleanup work with varied offload set

Data migration: 9-208X

Machine hour usage: 6-120% improvement

Georgia Tech

University

Trace

UNIVERSITY of WASHINGTON

Trace