Optimizing Relational Computing Performance on Heterogeneous Processors

H. Wu, I. Saeed, J. Young, C. Kersey, and S. Yalamanchili
School of Electrical and Computer Engineering
Georgia Institute of Technology

High Performance Relational Computing

- Current applications process 1 to 50 TBs of data [1]
- Not a traditional domain for GPU acceleration
- Goal: **10X-100X** application speedup over multicore processors

Multi-Predicate Join for SIMD Accelerators

- Implementation of Leapfrog Triejoin (LFTJ) on GPUs
- A worst-case optimal multi-predicate join algorithm
- CPU-version - T. L. Veldhuizen, ICDT 2014

Key idea: Leap over large segments to seek a specific (e.g., join) value

Primitives `next()` and `seek()`

- **Benefits**
 - Smaller memory footprint for temporary results
 - No data reconstruction, e.g., sorting or hash table construction

Near Memory Data Intensive Computing

- Parametric C++ processor synthesis environment
- HARP family of data parallel processors
- RISC processor core
- Assembler/emulator tools
- OpenCL compiler (in progress)

References