Optimizing Relational Computing Performance on Heterogeneous Processors

H. Wu, I. Saeed, J. Young, C. Kersey, and S. Yalamanchili

School of Electrical and Computer Engineering

Georgia Institute of Technology

High Performance Relational Computing

- Current applications process 1 to 50 TBs of data [1]
- Not a traditional domain for GPU acceleration
- Goal: 10X-100X application speedup over multicore processors

Multi-Predicate Join for SIMD Accelerators

Our Approach: Red Fox Tool Chain

- Implementation of Leapfrog Triejoin (LFTJ) on GPUs
- A worst-case optimal multi-predicate join algorithm
- CPU-version T. L. Veldhuizen, *ICDT 2014*

- Benefits
 - Smaller memory footprint for temporary results
 - No data reconstruction, e.g. sorting or hash table construction
- Worst-case optimal multi-predicate join in a SIMD accelerator[4]

- Relational queries are translated to optimized query plans and GPU primitives via the Red Fox compilation and runtime framework [3]
- Early work used CUDA-based primitives; current work focuses on OpenCL-based primitives
- Execution on integrated and attached accelerators

SHOC Benchmark Implementations

http://keeneland.gatech.edu/software/keeneland/shoc

- **SHOC** Scalable Heterogeneous Computing Benchmark Suite
- Standardized benchmark suite across languages and platforms
 - Full support for OpenCL, CUDA. OpenACC and Phi Offload in progress.
 Relational Algebra Primitives and TPC-H microbenchmarks
 - TPC-H queries
 - Current Effort: RA implementations on Intel Phi and Gen

Select (OpenCL)

Three-clique problem Four-clique problem Near Memory Data Intensive Computing

Moving the compute primitives for data analytics into the

memory system

- Parametric C++ processor synthesis environment
- HARP family of data parallel processors
- RISC processor core
- Assembler/emulator tools
- OpenCL compiler (in progress)

 Prototypes in execution in FPGAs

Example using a linear iterator

- Candidate Primitives
- Relational Algebra, MemcacheD,
- Sorting, search, encryption
- Sparse matrix operations
 - Video and Text search

HARP Architecture V2

Configurable

- Registers per thread, number of lanes, data path width
- Choice of functional units
- Small- ~1500 lines of C++

[1] IND. Oracle Users Group. A New Dimension to Data Warehousing: 2011 IOUG Data Warehousing Survey.

[2] B. He, et al. Relational query co-processing on graphics processors. TODS, 2009.

[3] H. Wu, et al. Red Fox: An Execution Environment for Relational Query Processing on GPUs, CGO 2014

[4] H. Wu, et al. Multipredicate Join Algorithms for Accelerating Relational Graph Processing on GPUs, ADMS 2014

References