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MOTIVATION
 INTERMEDIATE STAGES

Growing data volumes à Need for data-aware scheduling

For timely results, applications process a subset of inputs

Examples:

   Approximate Query Processing (Minitable, BlinkDB)

   Machine learning algorithms (SGD)




Combinatorial choices !


KMN SCHEDULER
 EVALUATION


HOW MUCH LOCALITY ?


ALSO IN THE PAPER


N Any K 

Choice-aware scheduler

   Use “late binding” i.e., choose the subset of data 
dynamically depending on state of the cluster 

   Extend benefits across stages using small number of 
additional tasks
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N=1000
 N=200
 Baseline
N – Number of blocks available


Memory locality à Orders of magnitude faster

“All or Nothing” implies all K tasks need locality

Hard to achieve on shared clusters with higher utilization

Analysis using uniform slot-utilization model



Locality vs. Utilization when running K = 100 tasks
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Cross-rack skew slows down 
network transfers



Insight: Run extra tasks (M > K) 

Spread out the K tasks chosen to 
reduce skew
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Straggle mitigation using extra tasks

Placing reduce tasks to minimize network traffic

Evaluation using Conviva SQL queries and ML algorithms


Cluster setup: 100 EC2 machines, m2.4xlarge

Workload: Replay of Facebook trace

Baseline: Pre-select random subset of inputs




Overall improvements from KMN


Effect of varying M/K
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