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MOTIVATION INTERMEDIATE STAGES
Growing data volumes à Need for data-aware scheduling
For timely results, applications process a subset of inputs
Examples:
   Approximate Query Processing (Minitable, BlinkDB)
   Machine learning algorithms (SGD)


Combinatorial choices !

KMN SCHEDULER EVALUATION

HOW MUCH LOCALITY ?

ALSO IN THE PAPER

N Any K 

Choice-aware scheduler
   Use “late binding” i.e., choose the subset of data 
dynamically depending on state of the cluster 
   Extend benefits across stages using small number of 
additional tasks
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Memory locality à Orders of magnitude faster
“All or Nothing” implies all K tasks need locality
Hard to achieve on shared clusters with higher utilization
Analysis using uniform slot-utilization model

Locality vs. Utilization when running K = 100 tasks
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Cross-rack skew slows down 
network transfers

Insight: Run extra tasks (M > K) 
Spread out the K tasks chosen to 
reduce skew
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Straggle mitigation using extra tasks
Placing reduce tasks to minimize network traffic
Evaluation using Conviva SQL queries and ML algorithms

Cluster setup: 100 EC2 machines, m2.4xlarge
Workload: Replay of Facebook trace
Baseline: Pre-select random subset of inputs


Overall improvements from KMN

Effect of varying M/K

0 10 20 30 40 50

0-10

11-100

>100

Job Completion Time (seconds)

Jo
b 

Si
ze


Baseline

KMN-M/K=1.05

0 5 10 15 20 25 30

<=4

4-to-8

>8

Shuffle Stage Time (seconds)

Cr
os

s 
Ra

ck
 S

ke
w


Baseline
KMN-M/K=1.0
KMN-M/K=1.05
KMN-M/K=1.1


