The Power of Choice in Data-aware Cluster Scheduling
Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J. Franklin, Ion Stoica

MOTIVATION
Growing data volumes \rightarrow Need for data-aware scheduling
For timely results, applications process a *subset* of inputs
Examples:
- Approximate Query Processing (Minitable, BlinkDB)
- Machine learning algorithms (SGD)

Combinatorial choices!

![Combinatorial choices diagram]

KMN SCHEDULER
Choice-aware scheduler
Use “late binding” i.e., choose the subset of data dynamically depending on state of the cluster
Extend benefits across stages using small number of additional tasks

HOW MUCH LOCALITY?
Memory locality \rightarrow Orders of magnitude faster
“All or Nothing” implies all K tasks need locality
Hard to achieve on shared clusters with higher utilization
Analysis using uniform slot-utilization model

Locality vs. Utilization when running K = 100 tasks

![Locality vs. Utilization graph]

INTERMEDIATE STAGES
Cross-rack skew slows down network transfers
Insight: Run extra tasks ($M > K$)
Spread out the K tasks chosen to reduce skew

EVALUATION
Cluster setup: 100 EC2 machines, m2.4xlarge
Workload: Replay of Facebook trace
Baseline: Pre-select random subset of inputs

Overall improvements from KMN

![Overall improvements graph]

Effect of varying M/K

![Effect of varying M/K graph]

ALSO IN THE PAPER
Straggle mitigation using extra tasks
Placing reduce tasks to minimize network traffic
Evaluation using Conviva SQL queries and ML algorithms