The Power of Choice in Data-aware Cluster Scheduling Shivaram Venkataraman, Aurojit Panda, Ganesh Ananthanarayanan, Michael J. Franklin, Ion Stoica

MOTIVATION

Growing data volumes \rightarrow Need for data-aware scheduling For timely results, applications process a *subset* of inputs Examples:

Approximate Query Processing (Minitable, BlinkDB) Machine learning algorithms (SGD)

Combinatorial choices !

INTERMEDIATE STAGES

Cross-rack skew slows down network transfers

Insight: Run extra tasks (M > K) Spread out the K tasks chosen to reduce skew

KMN SCHEDULER

Choice-aware scheduler

Use "late binding" i.e., choose the subset of data dynamically depending on state of the cluster

Extend benefits across stages using small number of additional tasks

HOW MUCH LOCALITY ?

Memory locality → Orders of magnitude faster "All or Nothing" implies all K tasks need locality Hard to achieve on shared clusters with higher utilization Analysis using uniform slot-utilization model **Cross Rack Skew = 3**

EVALUATION

Cluster setup: 100 EC2 machines, m2.4xlarge Workload: Replay of Facebook trace Baseline: Pre-select random subset of inputs

Overall improvements from KMN

Locality vs. Utilization when running K = 100 tasks

Effect of varying M/K

ALSO IN THE PAPER

Straggle mitigation using extra tasks Placing reduce tasks to minimize network traffic Evaluation using Conviva SQL queries and ML algorithms

