
Ligra++: Processing Large Graphs Using Compression
Julian Shun, Laxman Dhulipala, Guy Blelloch

Motivation Ligra++
 Growth in graph data sizes (social networks, scientific computing, biology, etc.)
 Need to process graphs quickly
 What approach to use? Distributed memory, shared memory, disk-based
 Shared memory is the fastest, but limited by memory size
 Cost of renting cloud machines increases with RAM size

 Idea: Use graph compression!

Carnegie Mellon University

Graph Compression

 Encode each difference using a k-bit code. Use k-1 bits for data, 1 bit as the
“continue” bit
 We use 8-bit (byte) and 4-bit (nibble) codes
 Example: encode “401” using a byte-code

 In binary:

 Byte-code:

 Note: first difference can be negative, so the first code for it stores a “sign” bit.
 Decoding is just encoding “backwards”

 Format: for each vertex, store differences between consecutive neighbors

1 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1

“continue” bit

Graph Reordering
 Can run graph reordering (“re-numbering”) algorithms to improve locality
and compression (and also performance)
 Goal: have neighbors who have ID’s close to own ID
 Various reordering algorithms: breadth-first search, depth-first search,
hybrid BFS/DFS, METIS (based on finding graph separators), and our own
separator-based algorithm
 Using best ordering, we get good compression for most graphs

 What about algorithm performance on compressed graphs?
 We implement graph compression and decoding techniques into the Ligra
shared-memory graph processing framework

 We modify the edgeMap function to decode each vertex’s compressed
edges on-the-fly
 To allow for parallel decoding of high-degree vertices, we split the neighbors
into chunks, compress each chunk separately, and decode each chunk in
parallel
 Encoding cost is amortized across all future computations on the graph

Ligra framework:
 represents a subset of vertices in a vertexSubset
 edgeMap: applies a function to the outgoing edges of a vertexSubset
 vertexMap: applies a function to the vertices in a vertexSubset

Performance
 Trade-offs: compressed versions have smaller memory footprint than
uncompressed version, but requires time for decoding
 Performance of compressed versions much better in parallel than sequentially
 In parallel, memory bandwidth/contention is more of a bottleneck, and
alleviates the cost of decoding!
 In parallel, byte code performance is competitive with uncompressed version

0

0.5

1

1.5

2

Ru
nn

in
g

tim
e

(n
or

m
al

ize
d

to

“o
rig

in
al

”)

PageRank (40 cores with hyper-threading)

Original
Byte
Nibble

0

0.5

1

1.5

2
Ru

nn
in

g
tim

e
(n

or
m

al
ize

d
to

“o

rig
in

al
”)

Breadth-first search (40 cores with hyper-threading)

Original
Byte
Nibble

Similar trends for other applications: betweenness centrality, radii estimation,
connected components, and Bellman-Ford shortest paths
 On 40 cores with hyper-threading, byte codes are between 1.5x slower and
2.7x faster

40-core Nehalem with
hyper-threading

BFS Betweenness
Centrality

Radii Connected
Components

PageRank Bellman-Ford
shortest paths

Original 4.66s 14s 24.5s 12s 8.27s 6.28s
Byte 3.87s 13.1s 23.5s 10.1s 7.47s 9.06s
Nibble 4.85s 18.6s 35.5s 15.7s 9.86s 13.7s

Running times on symmetrized Yahoo graph (1.4 billion vertices, 12.9 billion edges)
Conclusions
 With Ligra++, we can fit larger graphs than Ligra with the same
amount of memory or the same graph with less memory while
maintaining performance
 We are exploring techniques that reduce decoding cost to
further improve the running time of Ligra++

0
5

10
15
20
25
30
35

Bits per edge for compressed versus uncompressed

Original
Byte
Nibble

0

Ru
nn

in
g

tim
e

Memory usage

Memory size

Thrashing

	Slide Number 1

