Ligra++: Processing Large G

Julian Shun, Laxman Dhulipala, Guy Blelloch

raphs Using Compression

Carnegie Mellon University

E. "
Motivation

" Growth in graph data sizes (social networks, scientific computing, biology, etc.)
" Need to process graphs quickly

" What approach to use? Distributed memory, shared memory, disk-based

= Shared memory is the fastest, but limited by memory size

" Cost of renting cloud machines increases with RAM size

Memory size

ldea: Use graph compression!

Running time

\

Thrashing

Memory usage

Graph Compression

" Format: for each vertex, store differences between consecutive neighbors

8

6 Original
7 1 H 2 | 5 6 H 7
5 Differences

:-2"113:1{[1

—a

2

" Encode each difference using a k-bit code. Use k-1 bits for data, 1 bit as the
“continue” bit

" We use 8-bit (byte) and 4-bit (nibble) codes

" Example: encode “401” using a byte-code

JUUEI 1 1 0 0 1.00 0 1

W

—.
* Byte-code: [ CHCHENERCRCNES
|

“continue” bit

" Note: first difference can be negative, so the first code for it stores a “sign” bit.
" Decoding is just encoding “backwards”

Graph Reordering

" Can run graph reordering (“re-numbering”) algorithms to improve locality
and compression (and also performance)

" Goal: have neighbors who have ID’s close to own ID

" Various reordering algorithms: breadth-first search, depth-first search,
hybrid BFS/DFS, METIS (based on finding graph separators), and our own
separator-based algorithm

" Using best ordering, we get good compression for most graphs

[ 0. 000011

.I .
) »
. E= i il

Ligra++

=" What about algorithm performance on compressed graphs?
= We implement graph compression and decoding techniques into the Ligra
shared-memory graph processing framework

Ligra framework:
represents a subset of vertices in a vertexSubset
edgeMap: applies a function to the outgoing edges of a vertexSubset
vertexMap: applies a function to the vertices in a vertexSubset

" We modify the edgeMap function to decode each vertex’s compressed
edges on-the-fly

= To allow for parallel decoding of high-degree vertices, we split the neighbors
into chunks, compress each chunk separately, and decode each chunk in
parallel

" Encoding cost is amortized across all future computations on the graph

Performance

" Trade-offs: compressed versions have smaller memory footprint than
uncompressed version, but requires time for decoding

" Performance of compressed versions much better in parallel than sequentially
n parallel, memory bandwidth/contention is more of a bottleneck, and
eviates the cost of decoding!

n parallel, byte code performance is competitive with uncompressed version

al

Breadth-first search (40 cores with hyper-threading)

8
T 2
g _15
28 1 -
g 2 M Original
£ L0 - m Byte
s
g 0 u Nibble
5
o

&
o PageRank (40 cores with hyper-threading)
ke 2
N
=
€ ~15
O ®
££ 4
E ,%D M Original
E" 0.5 1 M Byte
c 0 - u Nibble
&

S @& & e v & P &SP

(\6‘0 K® Q/Qé\ (_)O(J &Q/Q 0<° O& \&{)’b‘ &${<"& 0®0 *,SQO

° > Q C ¢ ;

) & 00@ N\ >

sSimilar trends for other applications: betweenness centrality, radii estimation,
connected components, and Bellman-Ford shortest paths

" On 40 cores with hyper-threading, byte codes are between 1.5x slower and
2.7x faster

Input Graph Ligra Bits per edge for compressed versus uncompressed Memory usage for nlpkki240 Memory usage for com-Orkut
10000
random 433 MB 35 9000 |- ligra NN - 200 ligra —
rMat 465 MB 30 2 8000 - byte BN - byte
3D-grid 278 MB 25 % 7000 - mbble NN - % 1500 mbble M.
soc-LiveJournal | 362 MB 20 . § 2888 ! ] ;30 1000 - |
cit-Patents 156 MB 15 M Original 4000 - 1z
com-LiveJournal | 294 MB 10 ~ M Byte é ;888 ) | é 500 - ]
com-Orkut 950 MB > @ Nibble 1000 - - ;
nlpkkt240 3.1 GB 0 0 ) |
Twitter 12.08 GB .
uk-union 45.9 GB
Yahoo 62.8 GB

Running times on symmetrized Yahoo graph (1.4 billion vertices, 12.9 billion edges)

Betweenness Connected
Centrality Components
14s 12s

40-core Nehalem with

hyper-threading

PageRank |Bellman-Ford

shortest paths

" With Ligra++, we can fit larger graphs than Ligra with the same
amount of memory or the same graph with less memory while

Byte 3.87s 13.1s 23.5s  10.1s 7.47s 9.06s = We are exploring techniques that reduce decoding cost to
Nibble 4.85s 18.6s 35.5s 15.7s 9.865 13.7s further improve the running time of Ligra++
Carnegie
Georgia PRINCETON UNIVERSITY of
Mellon Tech unversity UC Berkeley. wasyingTON
TR University -




	Slide Number 1

