
Shader-Assisted Dynamic Bottleneck Acceleration
Nandita Vijaykumar, Gennady Pekhimenko, Adwait Jog, Abhishek Bhowmick, Onur Mutlu (CMU)

Idle Resources in GPUs The Memory Bandwidth Bottleneck

0

20

40

60

80

100

120

Is
su

e
Cy

cl
es

 (%
)

Unutilized Issue Cycles

Idle Cycles

Pipeline Stalls

Data
Dependence
Stalls

• A lot of stalls and idle time in the shaders
• Often there are insufficient warps to hide the

memory/computational latencies

• Performance is often dictated by available memory bandwidth
• Memory accesses are in bursts of both fine and coarse grained

phases

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

N
or

m
al

ize
d

IP
C

Memory Bandwidth Sensitivity

Baseline
2x BW
4x BW

Observations

• A significant amount of time is spent waiting for data
from memory

• Stalls are also due to long latency ALU operations and
resource contention

• Compute units are idle during this time
• Idle cores can be used to perform useful computation

Idle shaders can be used to perform computationally intensive
decompression algorithms

 Mechanism

• Convert decompression algorithm into multiple
simple instructions

• Retrieve compressed data into registers
• Spontaneously generate a helper warp to perform

decompression

Shader Assisted Data Decompression

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

N
or

m
al

ize
d

Pe
rf

or
m

an
ce

Baseline Ideal Compression On Core Decomp

Performance Impact

Front
End

Instruction
Buffer

Helper Warp
Buffer

ALU

LD/ST

Caches Global
Memory

Warp
Scheduler Issue RF

Load/Store

Compressed Data

Microcode
Cache

 Conclusions

• Helper warps can be inserted without significant
performance loss.

• Data in global memory is highly compressible
• Data Compression helps alleviate the bandwidth problem

 Advantages
• No dedicated logic required
• Flexibility in algorithm
• Reduced interconnect bandwidth usage
• Flexibility to compress at different levels of memory

hierarchy

Conclusion

Accelerating Bottlenecks

Idle pipelines in the cores can be used to accelerate bottlenecks
 Memory limited

• Data Compression
• Redundant/Speculative Execution
• Scheduling

 Computationally limited
• Memoization
• Prefetching

	Slide Number 1

