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Idle Resources in GPUs The Memory Bandwidth Bottleneck 
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• A lot of stalls and idle time in the shaders 
• Often there are insufficient warps to hide the 

memory/computational latencies 
 

• Performance is often dictated by available memory bandwidth 
• Memory accesses are in bursts of both fine and coarse grained 

phases 
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Observations 

• A significant amount of time is spent waiting for data 
from memory  

• Stalls are also due to long latency ALU operations and 
resource contention 

• Compute units are idle during this time 
• Idle cores can be used to perform useful computation 

 
 
 

Idle shaders can be used to perform computationally intensive 
decompression algorithms 

 
 Mechanism 

• Convert decompression algorithm into multiple 
simple instructions 

• Retrieve compressed data into registers  
• Spontaneously generate a helper warp to perform 

decompression 
 

Shader Assisted Data Decompression 
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 Conclusions 

• Helper warps can be inserted without significant 
performance loss. 

• Data in global memory is highly compressible 
• Data Compression helps alleviate the bandwidth problem 

 Advantages 
• No dedicated logic required 
• Flexibility in algorithm 
• Reduced interconnect bandwidth usage 
• Flexibility to compress at different levels of memory 

hierarchy 
 

Conclusion 

Accelerating Bottlenecks 

Idle pipelines in the cores can be used to accelerate bottlenecks 
 Memory limited 

• Data Compression 
• Redundant/Speculative Execution 
• Scheduling 

 Computationally limited 
• Memoization 
• Prefetching 
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