PipeCheck: Verifying Consistency Model Implementations

Daniel Lustig, Caroline Trippel, Michael Pellauer (Intel), and Margaret Martonosi, Princeton University

Motivation PipeCheck Overview Background

" CPUs are prone to memory reordering = Methodology and automated tool for Rules in a memory consistency model:
bugs which impact both correctness and verifying that a microarchitecture 1. Preserved Program Order (PPO): the set
performance, e.g.: of orderings en-

correctly implements the memory Second Op.

u : cre for faul load Store
AMD Phenom TLB bug ordering rules of the specification orced by default N »
"= |ntel Haswell/Broadwell TSX bug 2. Fences: usedtoen- &
" Treat preserved cog . . N Y
= Support ISTC-CC Goals: = force orderings not £ (mfence)
_ ST . program order T ol W |
Specialization: need to verify J———— enforced by PPO Ex: PPO for Total
increasingly diverse architectural designs (PPO) as a propo- - 3. Dependencies Store Order (TSO)
= Automation: PipeCheck verification is sition to be verified, | a0 e T 4. Reading writes early, e.g., from a
. . . :P peChe ff - —P /Fail
entirely automated in software rather than simply &= o processor’s own store buffer
= Big Data/to the Edge: code and/or data as an assumption thl' o
Experimental Testbed: Xxecutable ass/rai
migration assumes memory consistency = Compare micro- Formalization of memory consistency models
correctness to guarantee data arrival and architectural “happens-before” graphs IS an active research area even today

readiness conditions against architectural expectations

Litmus Tests EeCheck pn-Happens-Before GraEhs Verification Approach

= Most common existing

Arch.-level spec determines

., . FetchStage >() (Yeeeereen >
approach for verification 8 g 8 8 permitted vs. forbidden
Architecture-level analysis of above litmus DecodeStage ---> ---> . .
= Example for et under 6 TS0 ARle VS0 01 s (9 -0 (oS = With parch-level spec., PipeCheck
. Xy — . — 3k
Ld>Ld and v x=1rl="y , : calculates observable or not
S est (i2) y:]_ (i1) r2 = *x k Fetch J MemoryStage Q— Q Q—
t Proposed outcome: (l) \ WritebackStage Not
deri . 1=1-r2=0 Decode USSR Observable
reor enng. rio=1,r= L l) Store L omds StoreBuffer Q" , ItEdige 'tI‘yp:? ox X
e 2 Buff — ntra-ins rllC.lOH . t . t
= Proposed outcome may be | Breate e MemHierarchy . [Locion Permitted O] th;‘;anrgcei oy
forbidden or permitted, i Memory | | MemoryHerachy | Completed Q = e S| Pipeline ok
depending on the model: " Writeback T t—>| Iff:ff’v;s bug!
I IpeCLneck microarcnitectural analysis o . .
Memory Model Proposed Result in Microarchitecture of a standard the litmus test on the given pipeline Two test categories:
1o (T U s five-stage pipeline 1. PPO satisfaction tests: check that
SC, TSO: Forbidden
M, Power S = phb = “microarchitecturally happens before” all orderings required by PPO table
= Cycle in phb graph = the proposed execution is forbidden are enforced by pipeline
"= Unfortunately, testing = No cycle in phb graph = the proposed execution is allowed 2. Litmus tests: check that there is
cannot guarantee 100% = Explains why a particular outcome is allowed or forbidden no execution in which a forbidden
coverage test outcome is observed
Verification Results Advanced Techniques
= Tested four real = Litmus tests highlight discrepancies " PipeCheck supports:
and simulated =~ >eeewostBut > between arch. and parch. specs: " inter-dependence of coherence and
5-Stage w/ St. Buf. 67 CONS | ste nc
plpellnes Spec- o) ge:‘psAoRz T2 122 Litmus Test Expected >-Stage >-Stage gem OpenSPARC u " y h I - I
ified to be TSO pen T T R B techniques such as speculative load
iwp2.1/am orbi served? .
= PipeCheck verification is fast: wo2zfama2 | forid | v v v v reordering, even when they
iwp2.3a/amd4 Permit Not obs.? v v v . . .
o e T ’ ’ ’ technically violate the architecture-
iwp2.4/amd9 Permit Not obs. v v v Ievel SpECiﬁcation
10 H 5-Stg. (no SB) iwp2.5/amd8 Forbid v v Observed? v
o I iwp2. orbi . I I I
3 = 5-te. (w/S8) wis | fobd | V| v g ‘ Full details described in paper
Q 1 503 amd6 Forbid v v Observed? v e
= gem
.'E L] OpenSPARC T2 nl Permit Not obs.? v v v co n C I u S I O n
ns: 0.1 n2 Forbid v v Observed? v
© n orbi v v v v . . .
g oor r ' " o ° ° 5 5 = We define microarchitecture-level
LURRTEL LT P At—,——- happens-before graphs and uses them to
° 1 h :] [[]] [] [
I23e8ELEE8EE SRS wounfenced | Permit | MNotobs.! | v v v verify pipeline implementations agains
c o qCJ © Q Q Q Q 5 g' =
g3 SR g = 1. 5.Stage pipeline w/o store buffer is their architectural memory model
ER- £ ::° stricter than necessary specifications
Litmus Test = 2: PipeCheck found a bug in the gem5 = PipeCheck tool performs verification
03 pipeline (fixed in latest version) automatically given both specs
Carnegie UNIVERSITY of

Georgia : @ PRINCETON
tat st %lgg(gl}sﬁy Te%h@ inte! universiry UC Berkeley. wasHiNGTON

Center for Cloud Computing

