Characterizing Application Memory Error Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Memory Yixin Luo, Sriram Govindan,* Bikash Sharma,* Mark Santaniello,* Justin Meza,

Aman Kansal,^{*} Jie Liu,^{*} Badriddine Khessib,^{*} Kushagra Vaid,^{*} Onur Mutlu Carnegie Mellon University, * Microsoft Corporation

PROBLEM

- Server memory device cost is a key component of datacenter total cost of ownership
- Traditional hardware-based techniques to reduce memory errors further increase memory cost

Technique	Added Capacity	Added Logic
Parity	1.56%	Low

OUR PROPOSAL

We propose a hardware/software cooperative heterogeneous-reliability memory system design that provisions the right amount of memory reliability for different applications

Memory Error Models

Application Access Pattern Metrics/ Constraints

SEC-DED	12.5%	Low
DEC-TED	23.4%	Low
Chipkill	12.5%	High
RAIM	40.6%	High
Mirroring	125%	Low

KEY OBSERVATIONS & FINDINGS

There exists a diverse spectrum of tolerance to memory errors in new data-intensive applications, and traditional one-size-fits-all memory reliability techniques are inefficient in terms of cost

- 1. Error tolerance varies across applications
- 2. Error tolerance varies within an application
- 3. Quick-to-crash vs. periodically incorrect behavior
- 4. Some memory regions are safer than others
- 5. More severe errors mainly decreases correctness

6. Data recoverability varies across memory regions

CASE STUDY RESULTS FOR WEBSEARCH

	Mapping		Metrics					
Configuration	Private (36 GB)	Heap (9 GB)	Stack (60 MB)	Memory cost savings (%)	Server HW	Crashes/	Single	# incorrect/
					cost savings	server/	server	million
					(%)	month	availability	queries
Typical Server	ECC	ECC	ECC	0.0	0.0	0	100.00%	0
Consumer PC	NoECC	NoECC	NoECC	11.1	3.3	19	99.55%	33
Detect&Recover	Par+R	NoECC	NoECC	9.7	2.9	3	99.93%	9
Less-Tested (L)	NoECC	NoECC	NoECC	27.1 (16.4-37.8)	8.1 (4.9-11.3)	96	97.78%	163
Detect&Recover/L	ECC	Par+R	NoECC	15.5 (3.1-27.9)	4.7 (0.9-8.4)	4	99.90%	12

ECC = SEC-DED memory; NoECC = no detection/correction; Par+R = parity memory and recovery from disk;

: Typical one-size-fits-all baselines

: Proposed heterogeneous reliability memory systems

