Scaling Machine Learning with the Parameter Server

Mu Li, Dave Andersen, Junwoo Park, Alex Smola, Amr Ahmed, Vanja Josifovski, James Long, Eugene Shekita, Bor-Yiing Su

Machine Learning Problems

- Many models have O(1) blocks of O(n) terms (LDA, logistic regression, recommender systems)
- More features than what fits into RAM (10¹¹ dimensions) (personalized CTR, large inventory, action space)
- Unreliable infrastructure (preemption, failure, slowdown) \bullet
- Local model typically fits into RAM
- Data needs many disks for distribution (100TB and more) \bullet
- Decouple data processing from aggregation
- Sweet spot optimize for 80% of ML

Parameter Server

Communication

- Convergence speed depends on communication efficiency
- Sending (key, value) pairs is inefficient
 - Send only values (cache key list & checksum) instead
 - Send only (key, value) pairs that client needs
- Sending small gradients is inefficient
 - Send only sufficiently large ones instead
 - Randomize and compress accuracy of values
- Updating near-optimal values is inefficient
 - Send only large violators of KKT conditions
- Filters to allow clients / servers to self-censor

- Clients process data shards
- Clients have local view of global state and purely local state
- Parameter server has full global state \bullet
- Updates are via push / pull

Sparse Logistic Regression

- minimize $\sum \log(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda \|w\|_1$
 - **Compute gradient on (subset of data) on each client**
 - Send gradient from client to server asynchronously push(key_list,value_list)
- Proximal gradient update on server per coordinate
- Server returns parameters pull(key_list,value_list)

Architecture Overview

Chord style key layout (keys and machines in ring) paxos

resource server manager manager

server nodes

• Avoid need for fancy scheduler

Consistency and Vector Clocks

- Different consistency requirements for different models
- Use dependency graph to accomodate all of them (as special cases)
- Task controller sends subtasks to workers
- Flexible adjustment at runtime as needed

Sequential

Eventual

- **Replication along chain** (a la Ouroboros)
- Recovery from failure by hot failover
- Multiple virtual servers \bullet per server for load balancing and efficient recovery

- Dynamic scaling for free!
- Consistency via vector clocks for ranges
- Key / value compression
- Dynamic task dependency graph and scheduler

- Vector clocks
 - Per (key,value) pair costs O(clients) storage (fatal)
 - Apply for each range and \bullet partition only as needed

Performance

Logistic regression (100TB CTR data)

		Method	Consistency	LOC
	System-A	L-BFGS	Sequential	10,000
	System-B	Block PG	Sequential	30,000
	Parameter	Block PG	Bounded Delay	300
	Server		KKT Filter	

Sketches (15 machines on 40 Gbit/s net)

Peak inserts per second	1.3 billion
Average inserts per second	1.1 billion
Peak network bandwidth per machine	4.37 GBit/s
Time to recover a failed node	0.8 second

Topic models (4 Billion documents, 60k cores, 1M tokens)

