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Machine Learning Problems Communication

* Many models have O(1) blocks of O(n) terms e Convergence speed depends on communication efficiency
(LDA, logistic regression, recommender systems)

e More features than what fits into RAM (10! dimensions)
(personalized CTR, large inventory, action space)

e Sending (key,value) pairs is inefficient
e Send only values (cache key list & checksum) instead

e Send only (key,value) pairs that client needs

e Unreliable infrastructure (preemption, failure, slowdown) e Sending small gradients is inefficient

* Local model typically fits into RAM e Send only sufficiently large ones instead

e Data needs many disks for distribution (100TB and more) e Randomize and compress accuracy of values

e Decouple data processing from aggregation

e Updating near-optimal values is inefficient
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* Sweet spot - optimize for 80% of ML e Send only large violators of KKT conditions

Parameter Server e Filters to allow clients / servers to self-censor
e Clients process data shards e Avoid need for fancy scheduler |
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e Send gradient from client to server asynchronously
O push(key list,value_list)

e Different consistency requirements for different models

e Proximal gradient update on server per coordinate
e Server returns parameters e Use dependency graph to accomodate all of them
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e Sketches (15 machines on 40 Gbit/s net)

. Peak inserts per second 1.3 billion

1.1 billion

4 :i Average inserts per second
5 Peak network bandwidth per machine | 4.37 GBit/s
Time to recover a failed node 0.8 second
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,\ i 2 e Topic models (4 Billion documents, 60k cores, 1M tokens)
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