Algorithmic Improvements for Fast Concurrent Cuckoo Hashing

Xiaozhou Li (Princeton), David G. Andersen (CMU), Michael Kaminsky (Intel Labs), Michael J. Freedman (Princeton)

. .. & e v
l. Goal: Fast Concurrent Read & Write Il. Design Principles
A. Memory efficient (e.g., 95% space utilized) e Minimize critical sections
B. Fast concurrent reads * Exploit data locality

 Optimize concurrency control implementation
(e.g., use Intel TSX, hardware transactional memory)

C. Fast concurrent writes (scale with # of cores)

l1l. Starting Point: Optimistic Cuckoo Hashing IV. Optimizations for Insert

MemC3 (NSDI/ ’13): goals A and B, but NOT C * Breadth-first search for an empty slot
Each key is mapped to two random buckets - fewer items displaced (logarithmic)
e.g., b=2 Insert key y ¥ T o “cuckoo path”: a—*z—u—@
: O cache line reads and 4 writes
— »* Write to an empty slot in one of the two N
. a S, o x * 1z
— buckets. If all are full, move existing items e | = | <,
I t 1| totheir alternate buckets -> slow = oo P Paa.
| “cuckoo path”: ' —— ' 7 ' \
- d i * a—}e—bs—bx—}k—}f—bd—it—}® : * E * * @
e . * [« 9cacheline reads and 9 writes ' |
: : : * Lock after discovering an empty slot
— " 1 ¥« [ock the hash table -> single-writer . .f . 5 - Pty |
N - minimize the length of critical section
| <= « L. e
¥ i Lookup key x * Increase set-associativity
INEE o - fewer items displaced
. x . ¥* Read two buckets and compare with - fewer random (more sequential) memory reads
R each slot -> fast | * Improve concurrency control
T x Use key version c.ounters, no locking - use global locking and optimized TSX lock elision
' for reads -> multi-reader

- or use fine-grained spinlock and lock-striping

V. Evaluation (2 GB hash table, ¥134.2 M entries, 8 byte keys and 8 byte values)
Platform: Intel Haswell i7-4770 @ 3.4GHz, 4 cores (8 hyper-threaded cores), 16 GB DRAM, 8 MB L3-cache

Fill a cuckoo hash table from empty to 95% capacity

50% Insert 32.65,
1 thread 29.21 29.21 50% Lookup ed locking
8 threads 22.11 Intel TBB
17.72 ~®~ concurrent_hash map
2 94 —&— cuckoo w/ T5X
" 5.64 5.98 L e e N e e N e~ e G _a- cuckoo+
3.72 3.67
.1'38.1'84 138 | | K -e- - - -@-------.-.- - ®- cuckoo
100% Insert throughput with Intel TSX Throughput vs. # of threads
TSX-glibc: Intel library for TSX lock elision cuckoo: single-writer/multi-reader hashing in MemC3.
TSX*: our optimized implementation (detailed in paper) cuckoo+: our optimized cuckoo hashing
(Carnegie
In Proc. EuroSys’14 M Georgia g ® ™ PRINCETON UNIVERSITY of
ellon) @
M github.com/efficient/libcuckoo UIliVGI‘Sity Tech lnte' UNIVERSITY UcB erkeley WASHINGTON

Center for Cloud Computing

	Slide Number 1

