Algorithmic Improvements for Fast Concurrent Cuckoo Hashing

Xiaozhou Li (Princeton), David G. Andersen (CMU), Michael Kaminsky (Intel Labs), Michael J. Freedman (Princeton)

. .. & e v
l. Goal: Fast Concurrent Read & Write Il. Design Principles
A. Memory efficient (e.g., 95% space utilized) e Minimize critical sections
B. Fast concurrent reads * Exploit data locality

 Optimize concurrency control implementation
(e.g., use Intel TSX, hardware transactional memory)

C. Fast concurrent writes (scale with # of cores)

l1l. Starting Point: Optimistic Cuckoo Hashing IV. Optimizations for Insert

MemC3 (NSDI/ ’13): goals A and B, but NOT C * Breadth-first search for an empty slot
Each key is mapped to two random buckets - fewer items displaced (logarithmic)
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INEE o - fewer items displaced
. x . ¥* Read two buckets and compare with - fewer random (more sequential) memory reads
R each slot -> fast | * Improve concurrency control
T x Use key version c.ounters, no locking - use global locking and optimized TSX lock elision
' for reads -> multi-reader

- or use fine-grained spinlock and lock-striping

V. Evaluation (2 GB hash table, ¥134.2 M entries, 8 byte keys and 8 byte values)
Platform: Intel Haswell i7-4770 @ 3.4GHz, 4 cores (8 hyper-threaded cores), 16 GB DRAM, 8 MB L3-cache

Fill a cuckoo hash table from empty to 95% capacity
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TSX-glibc: Intel library for TSX lock elision cuckoo: single-writer/multi-reader hashing in MemC3.
TSX*: our optimized implementation (detailed in paper) cuckoo+: our optimized cuckoo hashing
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