
Algorithmic Improvements for Fast Concurrent Cuckoo Hashing
Xiaozhou Li (Princeton), David G. Andersen (CMU), Michael Kaminsky (Intel Labs), Michael J. Freedman (Princeton)

• Minimize critical sections
• Exploit data locality
• Optimize concurrency control implementation
 (e.g., use Intel TSX, hardware transactional memory)

 Platform: Intel Haswell i7-4770 @ 3.4GHz, 4 cores (8 hyper-threaded cores), 16 GB DRAM, 8 MB L3-cache

I. Goal: Fast Concurrent Read & Write II. Design Principles

V. Evaluation (2 GB hash table, ~134.2 M entries, 8 byte keys and 8 byte values)

100% Insert throughput with Intel TSX Throughput vs. # of threads

III. Starting Point: Optimistic Cuckoo Hashing

A. Memory efficient (e.g., 95% space utilized)

B. Fast concurrent reads

C. Fast concurrent writes (scale with # of cores)

* a
* t

d *
e *
* f
* k
*
* ∅
* x
s *

*

Lookup key x

Insert key y

Read two buckets and compare with
each slot -> fast
Use key version counters, no locking
for reads -> multi-reader

Write to an empty slot in one of the two
buckets. If all are full, move existing items
to their alternate buckets -> slow
“cuckoo path”:
a➝e➝s➝x➝k➝f➝d➝t➝∅
9 cache line reads and 9 writes

IV. Optimizations for Insert

* a

* * * z

* * * *

* *

* u

* * * ∅

• Breadth-first search for an empty slot
- fewer items displaced (logarithmic)
- enables prefetching

“cuckoo path”: a➝z➝u➝∅
9 cache line reads and 4 writes

• Lock after discovering an empty slot
- minimize the length of critical section

• Increase set-associativity
- fewer items displaced
- fewer random (more sequential) memory reads

• Improve concurrency control
- use global locking and optimized TSX lock elision
- or use fine-grained spinlock and lock-striping

MemC3 (NSDI ’13): goals A and B, but NOT C
Each key is mapped to two random buckets
Each bucket has b “slots” for items

TSX-glibc: Intel library for TSX lock elision
TSX*: our optimized implementation (detailed in paper)

Lock the hash table -> single-writer

Fill a cuckoo hash table from empty to 95% capacity

e.g., b=2

cuckoo: single-writer/multi-reader hashing in MemC3.
cuckoo+: our optimized cuckoo hashing

In Proc. EuroSys’14
github.com/efficient/libcuckoo

	Slide Number 1

