Improving DRAM Performance by Parallelizing Refreshes with Accesses

Kevin Chang†, Donghyuk Lee†, Zeshan Chisti§, Alaa Alameldeen§, Chris Wilkerson§, Yoongu Kim†, Onur Mutlu†
†Carnegie Mellon University, §Intel Labs

Problem
- **DRAM refresh** interferes with memory accesses, degrading system performance and energy efficiency
- **Goal**: Serve memory accesses in parallel with refreshes to reduce refresh interference on demand requests

Background and Motivation
- Memory controllers send **periodic refreshes** to DRAM ranks
 - tReflatenzy (TRFC): Varies based on DRAM chip density (e.g., 350ns)
 - tRefPeriod (TREFI): Remains constant
- 6.7%/23%/41% throughput loss for 4/32/64Gb DRAM
- **Two existing refresh modes**:
 - **All-Bank Refresh**: Employed in commodity DRAM (DDRx, LPDDRx)
 - **Per-Bank Refresh**: In mobile DRAM (LPDDRx)

 ![Timeline](image)

- **Shortcomings of per-bank refresh**:
 1) Per-bank refreshes are **strictly scheduled** in a **static round-robin order**
 2) A refreshing bank **cannot serve memory accesses**

 ![Can serve memory accesses in parallel with refreshes across banks](image)

Results
- **Methodology**
 - 8 OoO CPU cores
 - Caches: L1 – 32KB, Shared L2 – 4MB
 - DRAM: DDR3-1333, 64-bit channel, channels/ranks/banks = 2/2/8
 - Workloads: SPEC CPU2006, STREAM, TPC-C/H, random access

 ![System Performance](image)

 ![Energy Consumption](image)

 Consistent system performance improvement across DRAM densities (within 0.9%, 1.2%, and 3.8% of ideal)

 Consistent energy reduction

- **Our Solutions**
 1. **Dynamic Access Refresh Parallelization (DARP)**:
 - Improved scheduling policy for per-bank refreshes
 - **Component 1**: Out-of-order per-bank refresh
 - Schedule per-bank refreshes to idle banks opportunistically in a **dynamic order**

 ![Baseline: Round robin](image)

 ![Our mechanism: DARP](image)

 - **Component 2**: Write-refresh parallelization
 - Avoids refresh interference on latency-critical reads by refreshing with writes
 - Proactively schedules refreshes when banks are serving buffered writes

 2. **Subarray Access Refresh Parallelization (SARP)**:
 - Parallelizes refreshes and accesses within a bank

 ![Write-refresh parallelization](image)

- **0.71% DRAM die area overhead**

*Please read our paper in HPCA 2014 for more results