Improving DRAM Performance by Parallelizing Refreshes with Accesses

Kevin Chang[†], Donghyuk Lee[†], Zeshan Chisti[§], Alaa Alameldeen[§], Chris Wilkerson[§], Yoongu Kim[†], Onur Mutlu[†]

[†]Carnegie Mellon University, [§]Intel Labs

Problem

- DRAM refresh interferes with memory accesses, degrading system performance and energy efficiency
- <u>Goal</u>: Serve memory accesses in parallel with refreshes to reduce refresh interference on demand requests

Background and Motivation

Memory controllers send periodic refreshes to DRAM ranks

Our Solutions

Dynamic Access Refresh Parallelization (DARP):

- Improved scheduling policy for per-bank refreshes
- Component 1: Out-of-order per-bank refresh
 - Schedule per-bank refreshes to idle banks opportunistically in a dynamic order

Baseline: Round robin

tRefPeriod (tREFI): Remains constant

- 6.7%/23%/41% throughput loss for 4/32/64Gb DRAM
- Two existing refresh modes:

<u>Shortcomings of per-bank refresh</u>:
1) Per-bank refreshes are strictly scheduled in a static round-robin order

- Component 2: Write-refresh parallelization
 - Avoids refresh interference on latency-critical reads by refreshing with writes
 - Proactively schedules refreshes when banks are serving buffered writes

Parallelizes refreshes and accesses within a bank

Subarray Data 2) A **refreshing bank** cannot serve memory accesses Bank 1 Bank I/O Bank 0 Enable more parallelization between refreshes and Bank 1 > Timeline accesses using practical mechanisms Subarray 1 Refresh Subarray 0 Read Results 0.71% DRAM die area overhead **System Performance** Methodology **Energy Consumption** 8 OoO CPU cores 45 12.3% 20.2% 7.9% 5.2% 6 40 🖾 All-Bank All-Bank Caches: L1 – 32KB, Speedup (Ln) 35 (GeoMean) I Per-Bank ■ Per-Bank Shared L2 – 4MB 30 Elastic ■ Elastic 25 • DRAM: DDR3-1333, 64-bit Weighted DARP DARP per 20 channel, channels/ranks/banks SARP Energy ■ SARP .5 10 DSARP DSARP = 2/2/8 🗆 Ideal Ideal Workloads: SPEC CPU2006, 8Gb 8Gb 16Gb 32Gb 16Gb 32Gb STREAM, TPC-C/H, **DRAM Chip Density DRAM Chip Density** Consistent system performance improvement across DRAM random access **Consistent energy reduction** densities (within 0.9%, 1.2%, and 3.8% of ideal)

* Please read our paper in HPCA 2014 for more results

