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TODAY’S SYSTEMS USE > 1 RDMA READ TO ACCESS REMOTE HASH-TABLES
 pilaf Pilaf [1]

= Cuckoo hashing
= 2.5 RDMA reads per GET

* GET throughput:

FaRM-KV [2]

= Hopscotch hashing

= 1 or2 RDMA reads per GET
= GET throughput and

Client TrEap/2.5 Client latency depend on
= GET latency: bucket size
Lprap * 2.5 = RDMA writes for PUTs
Server’s RAM = RDMA verb messages for PUTs Server’s RAM

BACKGROUND

In-memory key-value services RDMA
= Interface: GET(key), PUT(key, value), = Low latency: (2-3 pus RTT) vs 30-60 us for Ethernet
DELETE(key) GET (2) DEL (2) = Memory verbs: direct access to memory of remote host

= Datais stored in RAM
= A key is mapped to a pointer using an
index (hash table, tree). Value is stored

* READ (local buf, size, remote buf)
" WRITE (local buf, size, remote buf)
= Messaging verbs:

Memcached Memcached
Server Server

On miss
at the pointer * SEND (local buf, size)
» Examples: Memcached, Redis, RAMCloud * RECV (local buf, size)
OUR APPROACH: DON’T PAY MICROSECONDS TO SAVE NANOSECONDS
Let the server traverse the data structure Design:
= Memory access latency (~ 100 ns) << RDMA read latency (~ 2-3 pus) = Borrow lossy index and circular log data structures from MICA[3]
Requirement: A fast and scalable request-reply mechanism = Clients write requests to the appropriate server core using RDMA writes

Core ideas: = Server computes response and replies with a SEND message over a

« An RDMA write is cheaper than an RDMA read datagram connection
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