Using RDMA Efficiently for Key-Value Services

AHUJ Kalia (CMU) Michael Kaminsky (Intel Labs), David G. Andersen (CMU)
. T e R " . . N 2 0=

TODAY’S SYSTEMS USE > 1 RDMA READ TO ACCESS REMOTE HASH-TABLES
 pilaf Pilaf [1]

= Cuckoo hashing
= 2.5 RDMA reads per GET

* GET throughput:

FaRM-KV [2]

= Hopscotch hashing

= 1 or2 RDMA reads per GET
= GET throughput and

Client TrEap/2.5 Client latency depend on
= GET latency: bucket size
Lprap * 2.5 = RDMA writes for PUTs
Server’s RAM = RDMA verb messages for PUTs Server’s RAM

BACKGROUND

In-memory key-value services RDMA
= Interface: GET(key), PUT(key, value), = Low latency: (2-3 pus RTT) vs 30-60 us for Ethernet
DELETE(key) GET (2) DEL (2) = Memory verbs: direct access to memory of remote host

= Datais stored in RAM
= A key is mapped to a pointer using an
index (hash table, tree). Value is stored

* READ (local buf, size, remote buf)
" WRITE (local buf, size, remote buf)
= Messaging verbs:

Memcached Memcached
Server Server

On miss
at the pointer * SEND (local buf, size)
» Examples: Memcached, Redis, RAMCloud * RECV (local buf, size)
OUR APPROACH: DON’T PAY MICROSECONDS TO SAVE NANOSECONDS
Let the server traverse the data structure Design:
= Memory access latency (~ 100 ns) << RDMA read latency (~ 2-3 pus) = Borrow lossy index and circular log data structures from MICA[3]
Requirement: A fast and scalable request-reply mechanism = Clients write requests to the appropriate server core using RDMA writes

Core ideas: = Server computes response and replies with a SEND message over a

« An RDMA write is cheaper than an RDMA read datagram connection

) 3 — Evaluation: Comparison against stripped versions of Pilaf and FaRM-KV
" 35
g > R — = Throughput:
= a O HERD O Pilaf-em-OPT HERD —=-Pilaf-em
- — 5 B B FaRM-KV-em B FaRM-KV-em-VAR =#=FaRM-em =#=FaRM-em-VAR
= 20 > 30
2 o ‘ 7 7
-g’ | =e=WRITE (Reliable Connected) S L —e=READ 8_ 25 Q. 75
g 10 + ~m-READ (Reliable Connected) 'E; ~@=\WRITE s 20 § 20 -
.E > | —a-WRITE (Unreliable Connected) ~ =#=REQUEST-REPLY = 15 - &\
— o0 | | | | 0 | 3 5 15
4 8 16 32 64 128 256 512 1024 0 64 128 192 256 £ 10 210 t‘:%;_l—‘
Size of payload (bytes) Size of payload (bytes) 3 > D s
= 0 . ! o
= Optimize verbs to reduce load on RDMA NICs = 5% PUT 50% PUT 100% PUT =7, o s 19 e
CCCCCC o Workload composition (|K| =16, |V| =32) Size of payload (bytes)
_<f[1 1 _ 30
B — g Latency:
.....) S 20 . .
M.N ‘T:{ 15 - Ei’aSic b =¢=HERD =l=FaRM-em ==FaRM-em-VAR =@=Pilaf-em-OPT " HERD de"vers 26 Mops Wlth 5
e - 2ol . Hs average latency
| Impact of optimizations § 5 @ +infined w10 = QOver 2X higher throughput
m‘,____ on reequest-only = ; T s . .
|| e SEND / SEND IWRITE/WRITEI WRITE / SEND ‘:’ 6 — than Pllaf and FaRM (Wlth
Q o
Request/Reply 8= — variable length keys)
= Only inbound RDMAs (requests) scale with the number of clients - : " Average latency over 2X lower
° s) 4) 4
use datagram transport for replies. "7 Throughput (Mops) than Pilaf’s and FaRM-KV’s at
: - their peak throughput
Messaglng verbs for Scalablllty: ~+=In-WRITE-UC ~ =BOut-WRITE-UC =#-Out-SEND-UD 4 cod P gNp
: : o Paper and code:
0 40
Mes:c,aglpg !S expenSIYe Only at the kL Using RDMA Efficiently for Key-Value Services (Anuj Kalia, Michael Kaminsky, David G. Andersen),
receiver’s side: HERD’s server does not §3° SIGCOMM 2014. https://github.com/efficient/HERD
25
post RECVs g = [1] Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. (Christoph
_ . . 2 . sing One-Side eads to Build a Fast, -Efficient Key-Value Store. (Christopher
RECV cost amortized over clients S 10 Mitchell, Yifeng Geng, Jinyang Li), ATC 2013
= Previous assumption; Messaging verbs § 5 [2] FaRM: Fast Remote Memory (Aleksandar Dragojevic¢, Dushyanth Narayanan, Miguel Castro)
. < 0 NSDI 2014
-
are more expe.ns!ve ,than 2 ,RFADS 2 #clie4nt proscess:s (# sltgrver irocegses) " [3] MICA: A Holistic Approach to Fast In-Memory Key-Value Storage (Hyeontaek Lim, Dongsu Han,
= With our optimizations, this is not true David G. Andersen, Michael Kaminsky) NSDI 2014

(Carnegie

Mell Georgla& i ® UNIVERSITY of
UI?lV%?Slty Tech (l I te,l

A oeney UC Berkeley. WASHINGTON

Intel Science & Technology
Center for Cloud Computing

