
Using RDMA Efficiently for Key-Value Services
Anuj Kalia (CMU), Michael Kaminsky (Intel Labs), David G. Andersen (CMU)

TODAY’S SYSTEMS USE > 1 RDMA READ TO ACCESS REMOTE HASH-TABLES

BACKGROUND

OUR APPROACH: DON’T PAY MICROSECONDS TO SAVE NANOSECONDS

Client

Server’s RAM

Get(K)

1: H1(K)

2: H2(K)

Pilaf

Client

Server’s RAM

Get(K)
1: H(K)

FaRM-KVPilaf [1]
▪ Cuckoo hashing
▪ 2.5 RDMA reads per GET
▪ GET throughput:

TREAD/2.5
▪ GET latency:

LREAD * 2.5
▪ RDMA verb messages for PUTs

FaRM-KV [2]
▪ Hopscotch hashing
▪ 1 or 2 RDMA reads per GET
▪ GET throughput and

latency depend on
bucket size

▪ RDMA writes for PUTs

In-memory key-value services
▪ Interface: GET(key), PUT(key, value),

DELETE(key)
▪ Data is stored in RAM

▪ A key is mapped to a pointer using an
index (hash table, tree). Value is stored
at the pointer

▪ Examples: Memcached, Redis, RAMCloud

RDMA
▪ Low latency: (2-3 µs RTT) vs 30-60 µs for Ethernet
▪ Memory verbs: direct access to memory of remote host

▪ READ(local_buf, size, remote_buf)
▪ WRITE(local_buf, size, remote_buf)

▪ Messaging verbs:
▪ SEND(local_buf, size)
▪ RECV(local_buf, size)

Webserver Webserver Webserver

Memcached
Server

Memcached
Server

Database

GET(2) DEL(2)

On miss

Let the server traverse the data structure
▪ Memory access latency (~ 100 ns) << RDMA read latency (~ 2-3 µs)
Requirement: A fast and scalable request-reply mechanism
Core ideas:
▪ An RDMA write is cheaper than an RDMA read

Paper and code:
Using RDMA Efficiently for Key-Value Services (Anuj Kalia, Michael Kaminsky, David G. Andersen),
SIGCOMM 2014. https://github.com/efficient/HERD

[1] Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. (Christopher
Mitchell, Yifeng Geng, Jinyang Li), ATC 2013

[2] FaRM: Fast Remote Memory (Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro)
NSDI 2014

[3] MICA: A Holistic Approach to Fast In-Memory Key-Value Storage (Hyeontaek Lim, Dongsu Han,
David G. Andersen, Michael Kaminsky) NSDI 2014

▪ HERD delivers 26 Mops with 5
µs average latency

▪ Over 2X higher throughput
than Pilaf and FaRM (with
variable length keys)

▪ Average latency over 2X lower
than Pilaf’s and FaRM-KV’s at
their peak throughput

Design:
▪ Borrow lossy index and circular log data structures from MICA[3]
▪ Clients write requests to the appropriate server core using RDMA writes
▪ Server computes response and replies with a SEND message over a

datagram connection
Evaluation: Comparison against stripped versions of Pilaf and FaRM-KV

Messaging verbs for scalability:
▪ Messaging is expensive only at the

receiver’s side: HERD’s server does not
post RECVs
▪ RECV cost amortized over clients

▪ Previous assumption: Messaging verbs
are more expensive than 2 READs
▪ With our optimizations, this is not true

▪ Only inbound RDMAs (requests) scale with the number of clients →
use datagram transport for replies.

Impact of optimizations
on reequest-only

0

5

10

15

20

25

30

35

40

4 8 16 32 64 128 256 512 1024

Th
ro

ug
hp

ut
 (

M
op

s)

Size of payload (bytes)

WRITE (Reliable Connected)

READ (Reliable Connected)

WRITE (Unreliable Connected)
0

1

2

3

4

0 64 128 192 256

La
te

nc
y

(u
s)

Size of payload (bytes)

READ

WRITE

REQUEST-REPLY

0

5

10

15

20

25

30

SEND / SEND WRITE / WRITE WRITE / SEND

Th
ro

ug
hp

ut
 (M

op
s)

Request/Reply

basic

+unreliable

+unsignalled

+inlined

0

5

10

15

20

25

30

35

40

2 4 6 8 10 12 14 16Th
ro

ug
hp

ut
 (

M
op

s)

#client processes (# server processes)

In-WRITE-UC Out-WRITE-UC Out-SEND-UD

0

5

10

15

20

25

30

5% PUT 50% PUT 100% PUTTh
ro

ug
hp

ut
 (M

op
s)

Workload composition (|K| = 16, |V| = 32)

HERD Pilaf-em-OPT
FaRM-KV-em FaRM-KV-em-VAR

0

5

10

15

20

25

30

0 64 128 192 256Th
ro

ug
hp

ut
 (

M
op

s)

Size of payload (bytes)

HERD Pilaf-em
FaRM-em FaRM-em-VAR

0

2

4

6

8

10

12

0 5 10 15 20 25 30

La
te

nc
y

(u
s)

Throughput (Mops)

HERD FaRM-em FaRM-em-VAR Pilaf-em-OPT

▪ Optimize verbs to reduce load on RDMA NICs

Throughput:

Latency:

