
Using RDMA Efficiently for Key-Value Services
Anuj Kalia (CMU), Michael Kaminsky (Intel Labs), David G. Andersen (CMU)

TODAY’S SYSTEMS USE > 1 RDMA READ TO ACCESS REMOTE HASH-TABLES

BACKGROUND

OUR APPROACH: DON’T PAY MICROSECONDS TO SAVE NANOSECONDS
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FaRM-KVPilaf [1]
▪ Cuckoo hashing
▪ 2.5 RDMA reads per GET
▪ GET throughput: 

TREAD/2.5
▪ GET latency:

LREAD * 2.5
▪ RDMA verb messages for PUTs

FaRM-KV [2]
▪ Hopscotch hashing
▪ 1 or 2 RDMA reads per GET
▪ GET throughput and 

latency depend on 
bucket size

▪ RDMA writes for PUTs

In-memory key-value services
▪ Interface: GET(key), PUT(key, value), 

DELETE(key)
▪ Data is stored in RAM

▪ A key is mapped to a pointer using an 
index (hash table, tree). Value is stored 
at the pointer

▪ Examples: Memcached, Redis, RAMCloud

RDMA
▪ Low latency: (2-3 µs RTT) vs 30-60 µs for Ethernet
▪ Memory verbs: direct access to memory of remote host

▪ READ(local_buf, size, remote_buf)
▪ WRITE(local_buf, size, remote_buf)

▪ Messaging verbs:
▪ SEND(local_buf, size)
▪ RECV(local_buf, size)
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Let the server traverse the data structure
▪ Memory access latency (~ 100 ns) << RDMA read latency (~ 2-3 µs)
Requirement: A fast and scalable request-reply mechanism
Core ideas:
▪ An RDMA write is cheaper than an RDMA read

Paper and code:
Using RDMA Efficiently for Key-Value Services (Anuj Kalia, Michael Kaminsky, David G. Andersen), 
SIGCOMM 2014. https://github.com/efficient/HERD

[1] Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store. (Christopher 
Mitchell, Yifeng Geng, Jinyang Li), ATC 2013

[2] FaRM: Fast Remote Memory (Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro)  
NSDI  2014

[3] MICA: A Holistic Approach to Fast In-Memory Key-Value Storage (Hyeontaek Lim, Dongsu Han, 
David G. Andersen, Michael Kaminsky) NSDI 2014

▪ HERD delivers 26 Mops with 5 
µs average latency

▪ Over 2X higher throughput 
than Pilaf and FaRM (with 
variable length keys)

▪ Average latency over 2X lower 
than Pilaf’s and FaRM-KV’s at 
their peak throughput

Design:
▪ Borrow lossy index and circular log data structures from MICA[3]
▪ Clients write requests to the appropriate server core using RDMA writes
▪ Server computes response and replies with a SEND message over a 

datagram connection
Evaluation: Comparison against stripped versions of Pilaf and FaRM-KV

Messaging verbs for scalability:
▪ Messaging is expensive only at the 

receiver’s side: HERD’s server does not 
post RECVs
▪ RECV cost amortized over clients

▪ Previous assumption: Messaging verbs 
are more expensive than 2 READs
▪ With our optimizations, this is not true

▪ Only inbound RDMAs (requests) scale with the number of clients → 
use datagram transport for replies.

Impact of optimizations
on reequest-only 
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Workload composition  (|K| = 16, |V| = 32)
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▪ Optimize verbs to reduce load on RDMA NICs

Throughput:

Latency:


