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Tyler B. Johnson, University of Washington Carlos Guestrin, University of Washington
B T B B " W 7 B e e

INTRODUCTION EMPIRICAL RESULTS

= Big data: not just many data points, also many features = Blitz algorithm, sequential setting (1 CPU)
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" A popular approach is feature selection: e—e Coordinate Descent ~ ®—e Naive Active Sets
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= Algorithms that aggressively prioritize features

" Communicates data, solving subproblems on master node
" Significantly reduces communication

o , . " Can be run in with other set-ups — aggressive subsets is the key!
" Prioritizes resources in theoretically sound manner

" Runs fast in distributed, multicore, and memory-limited settings " Distributed feature engineering

= Effective use of subproblems on feature subsets " Problem: predict stock volatility from financial report data

. . " Consider candidate features in parallel on worker nodes
" Eliminates features guaranteed to be irrelevant

. . . . - = Solve subproblems on master, reducing runtimes considerabl
= Discovers important features with high probability P 5 Y

Run Time Features in Master Problem Prediction Error
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(tri = our method, uni = simplified problem, glb = equivalent problem not using our method)

CONCLUSIONS & FUTURE WORK

" Feature subsets effective for large-scale feature selection
" Can be used in distributed, sequential, or approximate settings

" |n future, continue push to understand feature engineering

" Extend ideas to other important optimization problems
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