STRADS: Parallel ML Scheduling for High Efficiency
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 Some ML apps are intolerant of massive parallelism (Ex. Lasso)

= STRADS selects chord to minimize aggregate errors of parallel
update

->Parameters of a chord are approximately independent

High Throughput Scheduler

1. Pipeline multiple schedulers to hide scheduling latency
» Divide parameter space into disjoint partitions
(one per scheduler)
» Scheduling decisions depend only on local partition
» Update execution will see globally fresh data

2. Pipeline within one chord to hide communication latency

* Allow next chord to start execution before all results of
current chord are globally known

» Scheduler prioritizes most impactful (largest) updates to
front of pipeline

» Restrict updates that might not might not be fresh to least
impactful updates

* Ensure most impactful updates of consecutive chords see
fresh results (t3 see t0’s results)
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Conclusions

* Dual pipeline better utilizes workers and improves
convergence speed

* Three canonical ML applications (Lasso, Logistic Regression, SVM)
implemented in STRADS framework so far
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= Serial execution of chords is a performance bottleneck
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» |ssue: How do we keep all worker cores busy and effective?

Dual Pipeline Better Utilizes Workers
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Pipeline Experiment

Pipeline Experiment with 1M parameters o Application: Lasso
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