ELF: Efficient Lightweight Fast Stream Processing at Scale Liting Hu, Hrishikesh Amur, Karsten Schwan and Xin Chen College of Computing, Georgia Tech {foxting, amur, karsten, xchen384}@gatech.edu

How to process large-scale distributed streams with low latency and high throughput? **WHY** LAYERED STRUCTURE

- Large amount of live event logs, click streams, or other various data feeds.
- MapReduce is not for stream applications.

Hiding all messy details App1's cache App2's cache of parallelization, Shared

Laver2

Layer1

load-balancing

and fault-tolerance

Solutions need to be flexible and scalable.

OUR PROPOSAL - ELF

- Compressed Buffer Tree (CBT) like "Map".
- Shared Reducer Tree (SRT) like "Reduce".

Exploit P2P overlay for scalability and functionalities

WORKFLOW OF A STREAM APP USING ELF

Parse events into key-value pairs and send to CBT for local aggregation

Distributed datasets (Caches) are progressively reduced by SRT

Example of micro-sale application

BETTER PERFORMANCE

MORE FUNCTIONALITIES

Node

CBT for local aggregation

<u>-@</u>___@

- Little overheads no storage nodes, memory efficiency.
- Low latency 100 times less than MapReduce and its variations.
- High throughput long historical records.

Support changing the query on the fly.

- Support adding or removing participating nodes.
- ELF is full decentralized without master node.

EVALUATION OF ELF

Latency is as low as 10 milliseconds for query completion time; Scales well with number of nodes.

Startup time is around 7 seconds; New query taking effect time is as low as 0.1 second.

Carnegie

University

Mellon

The network bandwidth overhead for maintaining the overlay and SRT is low.

PRINCETON UNIVERSITY

Number of roots per computing node When deploying 1000 jobs onto 1000 nodes, the load is balanced without

UNIVERSITY of

WASHINGTON

causing bottleneck.

UC Berkeley.

ELF is scalable, flexible, and configuration-free!

(intel)

Georgia

Tech