
ELF: Efficient Lightweight Fast Stream Processing at Scale
Liting Hu, Hrishikesh Amur, Karsten Schwan and Xin Chen

College of Computing, Georgia Tech
{foxting, amur, karsten, xchen384}@gatech.edu

▪ Large amount of live event logs, click streams, or other 
various data feeds.

▪ MapReduce is not for stream applications.
▪ Solutions need to be flexible and scalable.

WHY

OUR PROPOSAL - ELF

How to process large-scale distributed streams with low latency and high throughput?
LAYERED STRUCTURE

WORKFLOW OF A STREAM APP USING ELF

BETTER PERFORMANCE MORE FUNCTIONALITIES

EVALUATION OF ELF

▪ Compressed Buffer Tree (CBT) like “Map”.
▪ Shared Reducer Tree (SRT) like “Reduce”.

Exploit P2P overlay for scalability and functionalities

▪ Little overheads – no storage nodes, memory efficiency.
▪ Low latency – 100 times less than MapReduce and its variations.
▪ High throughput – long historical records.

▪ Support changing the query on the fly.
▪ Support adding or removing participating nodes.
▪ ELF is full decentralized without master node.

Hiding all messy details 
of parallelization, 
load-balancing
and fault-tolerance 

ELF is scalable, flexible, and configuration-free!

Parse events into key-value pairs and
send to CBT for local aggregation

Example of micro-sale applicationDistributed datasets (Caches) are
progressively reduced by SRT

Latency is as low as 10 
milliseconds for query 
completion time; Scales 
well with number of nodes.

Startup time is around
7 seconds; New query
taking effect time is as
low as 0.1 second.

The network bandwidth 
overhead for maintaining 
the overlay and SRT is
low.

When deploying 1000 
jobs onto 1000 nodes, the 
load is balanced without
causing bottleneck.


