LazyTable: Distributed Machine Learning with the Stale Synchronous Parallel Model
Qirong Ho, Henggang Cui, James Cipar, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Wei Dai, Jinliang Wei, Greg Ganger, Phil Gibbons*, Garth Gibson, Eric Xing (CMU, *Intel)

PARALLEL MACHINE LEARNING
- Learn model parameters from a big dataset
- Work is partitioned among multiple threads
- Each thread processes a partition of input data
- Threads iteratively update the shared parameter state based on their input data
- Parameter server
 - Maintains shared values for worker threads
 - Tradeoff between fresh views and synchronization
- Most ML algorithms tolerate bounded staleness
 - Common model: Bulk Synchronous Parallel
 - Barrier and data update at end of each clock
 - Worker guaranteed to see updates up to previous clock
- New model: Stale Synchronous Parallel
 - Better straggler tolerance
 - Tunable data staleness ("slack")
 - Any thread can be up to slack clocks ahead of slowest thread

STATE SYNCHRONOUS PARALLEL MODEL
- Tunable data staleness ("slack")
 - Any thread can be up to slack clocks ahead of slowest thread
 - Parameter server based on SSP
 - A client library with a cluster of tablet servers
 - Multiple layers of caches and operation logs
 - Closer caches tend to be more stale, but faster
 - Slack bound specified in each read operation
 - Data allowed to be "slack" clocks stale
 - Cache data returned, if fresh enough
 - Theorem 1: SSP approximates sequential execution
 - Error at each update is strictly bounded
 - Theorem 2: For iterative-convergent ML problems, SSP guarantees algorithm convergence
 - Hence, ML algorithms converge under SSP
 - albeit via a noisy trajectory

WHY DOES SSP CONVERGE?
- Theorem 1: SSP approximates sequential execution
 - Error at each update is strictly bounded
- Theorem 2: For iterative-convergent ML problems, SSP guarantees algorithm convergence
 - Hence, ML algorithms converge under SSP
 - albeit via a noisy trajectory

RESULTS & DIRECTIONS
- Many results found on companion poster
- Key takeaways: converge faster with SSP
 - More staleness → more iters/sec, less effective/iter
 - Sweet spot balances the two
 - Works well for range of ML approaches
 - Topic Modeling (LDA with Gibbss sampling)
 - Sparse Matrix Factorization (stochastic gradient descent)
 - Shotgun (coordinate gradient descent)
- Continuing to explore iterative nature
 - Better data assignment to tablet servers
 - Memory/thread scheduling on multi-core machines
 - Try for near-ideal straggler tolerance