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PARALLEL MACHINE LEARNING
▪ Learn model parameters from a big dataset

▪ Work is partitioned among multiple threads
▪ Each thread processes a partition of input data
▪ Threads iteratively update the shared parameter state 

based on their input data
▪ Parameter server

▪ Maintains shared values for worker threads
▪ Tradeoff between fresh views and synchronization

▪ Most ML algorithms tolerate bounded staleness
▪ Common model: Bulk Synchronous Parallel

▪ Barrier and data update at end of each clock
▪ Worker guaranteed to see updates up to previous clock

▪ New model: Stale Synchronous Parallel
▪ Better straggler tolerance

▪ Tunable data staleness ("slack")
▪ Any thread can be up to slack clocks ahead of slowest thread

▪ Parameter server based on SSP
▪ A client library with a cluster of tablet servers

▪ Multiple layers of caches and operation logs
▪ Closer caches tend to be more stale, but faster

▪ Slack bound specified in each read operation
▪ Data allowed to be "slack" clocks stale
▪ Cache data returned, if fresh enough

▪ Hence, ML algorithms converge under SSP
▪ albeit via a noisy trajectory
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▪ Many results found on companion poster
▪ Key takeaways: converge faster with SSP

▪ More staleness → more iters/sec, less effective/iter
▪ Sweet spot balances the two

▪ Works well for range of ML approaches
▪ Topic Modeling (LDA with Gibbs sampling)
▪ Sparse Matrix Factorization (stochastic gradient descent)
▪ Shotgun (coordinate gradient descent)

▪ Continuing to explore iterative nature
▪ Better data assignment to tablet servers
▪ Memory/thread scheduling on multi-core machines
▪ Try for near-ideal straggler tolerance
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▪ Theorem 1: SSP approximates sequential execution
▪ Error at each update is strictly bounded

▪ Theorem 2: For iterative-convergent ML problems, SSP 
guarantees algorithm convergence
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