
LazyTable: Distributed Machine Learning with the
Stale Synchronous Parallel Model

Qirong Ho, Henggang Cui, James Cipar, Jin Kyu Kim, Abhimanu Kumar, Seunghak Lee, Wei Dai, Jinliang Wei,
Greg Ganger, Phil Gibbons*, Garth Gibson, Eric Xing (CMU, *Intel)

PARALLEL MACHINE LEARNING
▪ Learn model parameters from a big dataset

▪ Work is partitioned among multiple threads
▪ Each thread processes a partition of input data
▪ Threads iteratively update the shared parameter state

based on their input data
▪ Parameter server

▪ Maintains shared values for worker threads
▪ Tradeoff between fresh views and synchronization

▪ Most ML algorithms tolerate bounded staleness
▪ Common model: Bulk Synchronous Parallel

▪ Barrier and data update at end of each clock
▪ Worker guaranteed to see updates up to previous clock

▪ New model: Stale Synchronous Parallel
▪ Better straggler tolerance

▪ Tunable data staleness ("slack")
▪ Any thread can be up to slack clocks ahead of slowest thread

▪ Parameter server based on SSP
▪ A client library with a cluster of tablet servers

▪ Multiple layers of caches and operation logs
▪ Closer caches tend to be more stale, but faster

▪ Slack bound specified in each read operation
▪ Data allowed to be "slack" clocks stale
▪ Cache data returned, if fresh enough

▪ Hence, ML algorithms converge under SSP
▪ albeit via a noisy trajectory

Tablet server process-0

Client process-0

App. thread

Client library

Thread
cache/oplog

Process
cache/oplog

App. thread

Thread
cache/oplog

Tablet server process-1

Client process-1

App. thread

Client library

Thread
cache/oplog

Process
cache/oplog

App. thread

Thread
cache/oplog

Clock 1 2 3 4 5 6 7 8 9

Results visible,
because old enough Thread 1

Thread 2

Thread 3

Slack bound of 3 clocks

Results visible,
because read-my-writes
Results not necessarily
visible

▪ Many results found on companion poster
▪ Key takeaways: converge faster with SSP

▪ More staleness → more iters/sec, less effective/iter
▪ Sweet spot balances the two

▪ Works well for range of ML approaches
▪ Topic Modeling (LDA with Gibbs sampling)
▪ Sparse Matrix Factorization (stochastic gradient descent)
▪ Shotgun (coordinate gradient descent)

▪ Continuing to explore iterative nature
▪ Better data assignment to tablet servers
▪ Memory/thread scheduling on multi-core machines
▪ Try for near-ideal straggler tolerance

Clock 0 1 2 3 4 5 6 7

Thread 1

Thread 2

Thread 3

Sequential execution

Maximum extent of
error for this update:

Slack bound of 3 clocks

1

Optimum

noisy gradient

true
gradient

2

3
4

Next state = previous state + noisy gradient
t t+1

▪ Theorem 1: SSP approximates sequential execution
▪ Error at each update is strictly bounded

▪ Theorem 2: For iterative-convergent ML problems, SSP
guarantees algorithm convergence

WHY DOES SSP CONVERGE?

STATE SYNCHRONOUS PARALLEL MODEL

LAZYTABLE SYSTEM OVERVIEW

RESULTS & DIRECTIONS

