Unique Nature of ML

1. ML algorithms create order from chaotic process
 - Iterative, approximate, hill-climbing algorithms
 - Find a good-enough solution from random starting point
 - ML algorithms "self-heal"; mitigate errors in previous iterations to some degree
 - No need for fine-grained but costly fault tolerance
 - Can also exploit error-tolerance to increase speed!

2. ML is dynamic and perpetually rewiring
 - Ever-changing, "soft" dependencies in model state
 - Continuously analyze model structure, to find best parallel compute strategy at every moment
 - Not all parts of ML model equally important
 - Prioritize most important areas for speedup

Iterative Algorithms

- Iterative-convergent (IC) algorithms start from a non-meaningful model state, and climb towards a good, possibly non-unique, solution
- IC algos are approximation algorithms
 - Never get "best" solution; settle for a "good-enough" one
 - ML practice is to stop when additional computation produces diminishing returns
- Even the IC algo trajectory can be approximated --- in other words, execution is error-tolerant

\[
D = \text{Data} \\
A^{(t-1)} = \text{Model State at iteration (t-1)}
\]

Data Parallel Controller

- A high-throughput distributed key-value store that schedules communications (reads/writes) for improved ML algorithm effectiveness under limited bandwidth
- Novel synchronization protocol supporting bounded staleness
- Exploit error tolerance in iterative-convergent ML algorithms; prioritize communications using both staleness (age) and impact on the ML algorithm, with sound guarantees

Model Parallel Controller

- Continuously analyzes the "soft", statistical dependencies between parts of an ML model.
- Avoids breaking such dependencies during parallelization, which can cause algorithm divergence/failure
- Prioritize variables to maximize progress
 - E.g., Prioritize variables that cause large reduction in objective function in the last iteration

Performance

- **Gene Analysis (LASSO)**
 - Petuum (2.7 hrs)
 - Shotgun (444 hrs)
 - 5.2x faster @ 100M dimensions

- **Netflix (Collaborative Filtering)**
 - Petuum (2.8 mins)
 - GraphLab (5 mins)
 - 2x faster @ 40 ranks

- **Yahoo LDA (News Analysis)**
 - Petuum (6.5 mins)
 - Yahoo LDA (13 mins)
 - 2x faster @ 5000 topics

Open Source

- http://petuum.org/
- Available Apps:
 - Latent Dirichlet Allocation (Topic Modeling)
 - Lasso
 - Deep Neural Network
 - Matrix Factorization
 - More apps to be added quarterly

Acknowledgement

Petuum is a SailingLab project inspired by collaboration with Cui Henggang, Phillip Gibbons, Greg Ganger, and Garth Gibson.